а) по следствию из теоремы синусов:
a / sin∠A = 2R
sin∠A = a / (2R) = 5/8
По значению синуса угол однозначно определить нельзя, он может быть как острым так и тупым, значит треугольник задан неоднозначно.
б) S = 1/2 · ab·sin∠C
sin∠C = 2S/(ab) = 24 / 30 = 4/5
в) по теореме косинусов:
АС² = BC² + AB² - 2·BC·AB·cos∠ABC
169 = BC² + 64 - 16 · BC · (-1/2)
BC² + 8·BC - 105 = 0
D = 64 + 420 = 484 = 22²
BC = (- 8 + 22)/2 = 7 или BC = (- 8 - 22)/2 = - 15 - не подходит по смыслу задачи
Так как третья сторона находится однозначно, то и треугольник задан однозначно.
а) по следствию из теоремы синусов:
a / sin∠A = 2R
sin∠A = a / (2R) = 5/8
По значению синуса угол однозначно определить нельзя, он может быть как острым так и тупым, значит треугольник задан неоднозначно.
б) S = 1/2 · ab·sin∠C
sin∠C = 2S/(ab) = 24 / 30 = 4/5
По значению синуса угол однозначно определить нельзя, он может быть как острым так и тупым, значит треугольник задан неоднозначно.
в) по теореме косинусов:
АС² = BC² + AB² - 2·BC·AB·cos∠ABC
169 = BC² + 64 - 16 · BC · (-1/2)
BC² + 8·BC - 105 = 0
D = 64 + 420 = 484 = 22²
BC = (- 8 + 22)/2 = 7 или BC = (- 8 - 22)/2 = - 15 - не подходит по смыслу задачи
Так как третья сторона находится однозначно, то и треугольник задан однозначно.
AD^2+AC^2-2AD*AC*cos(a/2)=DC^2
************
-2AB*AC*cos(a/2)=BC^2-(AB^2+AC^2)
-2AD*AC*cos(a/2)=DC^2-(AD^2+AC^2)
************
(BC^2-(AB^2+AC^2))*AD=(DC^2-(AD^2+AC^2))*AB
AC^2*(AB-AD)=(DC^2-AD^2)*AB-(BC^2-AB^2)*AD
AC^2=((DC^2-AD^2)*AB-(BC^2-AB^2)*AD)/ (AB-AD)=
=((2^2-4^2)*3-(3-3^2)*4)/ (3-4)=12
*********************
АВ=3, ВС=√3, CD=2, AD=4, AC = 2√3
***************
cos(a/2)=(BC^2-(AB^2+AC^2))/(-2AB*AC)=(3-(3^2+12))/(-2*3*2*корень(3) ) = корень(3)/2
а = 60 градусов
cos(в)=(АC^2-(AB^2+ВC^2))/(-2AB*ВC) = (12-(3^2+3))/(-2*3*корень(3)) = 0
в = 90 градусов
cos(д)=(АC^2-(АД^2+ДC^2))/(-2AД*ДC) = (12-(4^2+2^2))/(-2*4*2) = 0,5
d = 60 градусов
c=360 -60- 90 - 60 = 150 градусов
ВД = корень(АВ^2+АД^2-2*AB*АД*cos(a))=корень(3^2+4^2-2*3*4*cos(pi/3))= корень(13)