1) Сумма углов в треугольнике равна 180°. Отсюда сумма острых углов в прямоугольном треугольнике равна 90. Обозначим меньший угол за х, тогда больший угол равен 8х. Составим уравнение: х+8х=90. х=10°. Значит меньший угол = 10°, больший = 80°
2) Обозначим острый угол, из которого опущена биссектриса, за х. Тогда этот угол разделяется биссектрисой на два равных угла х/2. Прямой угол биссектрисой делится на 2 угла по 45°. Сумма углов в полученном треугольнике: 45+132+х/2=180 х/2=3 х=6°
Тогда третий угол в треугольнике равен 180-90-6=84°
3) Угол 60° биссектрисой разделится на 2 угла 30° Катет, лежащий против угла 30° равен половине гипотенузы: 18/2=9
4) В прямоугольном треугольнике сумма острых углов равна 90° В равнобедренном треугольнике углы при основании равны. Основание - гипотенуза, значит острые углы равны 45° Из этого следует равенство по двум углам и стороне между ними
Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Следовательно, четырехугольник, образованный линейным углом данного двугранного угла, лежит в плоскости, перпендикулчрной ребру этого угла, является выпуклым и имеет три угла, равные 100°, 90° и 90°. Так как сумма внутренних углов четырехугольника равна 360°, то искомый угол равен 360° -280° = 80°.
Составим уравнение: х+8х=90.
х=10°. Значит меньший угол = 10°, больший = 80°
2) Обозначим острый угол, из которого опущена биссектриса, за х. Тогда этот угол разделяется биссектрисой на два равных угла х/2.
Прямой угол биссектрисой делится на 2 угла по 45°.
Сумма углов в полученном треугольнике: 45+132+х/2=180
х/2=3
х=6°
Тогда третий угол в треугольнике равен 180-90-6=84°
3) Угол 60° биссектрисой разделится на 2 угла 30°
Катет, лежащий против угла 30° равен половине гипотенузы: 18/2=9
4) В прямоугольном треугольнике сумма острых углов равна 90°
В равнобедренном треугольнике углы при основании равны. Основание - гипотенуза, значит острые углы равны 45°
Из этого следует равенство по двум углам и стороне между ними
Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Следовательно, четырехугольник, образованный линейным углом данного двугранного угла, лежит в плоскости, перпендикулчрной ребру этого угла, является выпуклым и имеет три угла, равные 100°, 90° и 90°. Так как сумма внутренних углов четырехугольника равна 360°, то искомый угол равен 360° -280° = 80°.
ответ: 80°.