9.рассмотрим треугольники ROP и OPS: углы ROP=SOP(по рисунку), OP-общая сторона, углы RPO=OPS(по рисунку) следует треугольник равны по 2 признаку
10. рассмотрим треугольник oad и ocd: угл О-общий, oc=od по рисунку, углы oda=ocb по рисунку, следует треугольники равны по 1 признаку
11. рассмотрим треугольники MPK и KPN: KP-(ОБЩАЯ СТОРОНА), KM=KN(ПО РИСУНКУ), УГЛЫ MKP=PKM (по рисунку), следует треугольник равен по 1 признаку
12. рассмотрим треугольники abc и cad, ad=bc по рисунку, cd=ab по рисунку, ac-общая сторона, следует треугольник равны по 3 признаку
13. рассмотрим треугольники adc и cdb, cd- общая сторона, углы acd=dcb по рисунку, углы adc=bdc по рисунку, следует треугольники равны по 2 признаку
14.рассмотрим треугольники rpq и rqs, rg- общая сторона, углы prq=rqs по рисунку, углы pqr=qrs по рисунку, следует треугольник равны по 2 признаку.
15. рассмотрим треугольники abd и dbc, db-общая, углы adb=dbc по рисунку, углы cdb=abd, следует треугольники равны по 2 признаку.
16. рассмотрим треугольники ktm и tps, kt=tp по рисунку, mt=ts по рисунку, углы ktm=stp ( т.к вертикальные углы) следует треугольники равны по 1 признаку
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
9.рассмотрим треугольники ROP и OPS: углы ROP=SOP(по рисунку), OP-общая сторона, углы RPO=OPS(по рисунку) следует треугольник равны по 2 признаку
10. рассмотрим треугольник oad и ocd: угл О-общий, oc=od по рисунку, углы oda=ocb по рисунку, следует треугольники равны по 1 признаку
11. рассмотрим треугольники MPK и KPN: KP-(ОБЩАЯ СТОРОНА), KM=KN(ПО РИСУНКУ), УГЛЫ MKP=PKM (по рисунку), следует треугольник равен по 1 признаку
12. рассмотрим треугольники abc и cad, ad=bc по рисунку, cd=ab по рисунку, ac-общая сторона, следует треугольник равны по 3 признаку
13. рассмотрим треугольники adc и cdb, cd- общая сторона, углы acd=dcb по рисунку, углы adc=bdc по рисунку, следует треугольники равны по 2 признаку
14.рассмотрим треугольники rpq и rqs, rg- общая сторона, углы prq=rqs по рисунку, углы pqr=qrs по рисунку, следует треугольник равны по 2 признаку.
15. рассмотрим треугольники abd и dbc, db-общая, углы adb=dbc по рисунку, углы cdb=abd, следует треугольники равны по 2 признаку.
16. рассмотрим треугольники ktm и tps, kt=tp по рисунку, mt=ts по рисунку, углы ktm=stp ( т.к вертикальные углы) следует треугольники равны по 1 признаку
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.