Путешествие во времени — гипотетическое перемещение человека или каких-либо объектов из настоящего в или будущее, в частности, с технического устройства, называемого «машиной времени».
Фотография 1941 года на открытии Голд-бридж в Британской Колумбии (Канада) запечатлела якобы путешественника во времени. В действительности, облик мужчины соответствует эпохе и отличается от собравшихся тем, что те одеты более официально. Очки «путешественника — хипстера» изобретены ещё в 1920-е годы, на футболке угадывается логотип «Монреаль Марунз»[1][2].
Нам известна диагональ ромба (d) и противолежащий ей угол (α) (см. рис. 0).
2. Ход дальнейшего решения.
Найдём прилежащий к этой диагонали угол (см. рис. 1) он зелённого цвета, и построим ромб с через него.
3. Решение.
(см. рис. 2) Из вершины угла (α) проведём полуокружность радиусом r она пересечёт стороны угла в двух точках(C и A), соединим эти точки, теперь найдём середину этого отрезка.
Как найти середину: (см. рис. 3) на концах отрезка мы проводим полуокружность радиусом зрительно больше, чем половина (можно взять радиусом всего отрезка). Эти полуокружности пересекутся в двух точках соединяем их прямой, эта прямая пересечёт наш отрезок пополам, это верно т.к. полученной фигурой будет ромбом, а у ромба диагонали делятся пополам.
(см. рис. 4) нашли середину такого отрезка (H), теперь соединяем её и вершину угла, это будет биссектриса т.к. ΔBHC и ΔBHA равны по трём сторонам, а значит их соответственные углы равны. ΔBCA - равнобедренный, а BH - медиана, поэтому BH - высота и ∠BHC = 90°, получается, что ∠BCH и есть тот, которые мы искали.
(см. рис. 7) переносим получившийся зелёный угол 4 раза на диагональ (d) как показано.
Как перенести угол: (см. рис. 5) из вершины игла проводим полуокружность радиусом n, соединяем точки пересечения полуокружности со сторонами угла. Получился отрезок длиной m. (см. рис. 6) на прямой берём точку O из этой точки проводим полуокружность радиусом n, полуокружность пересечёт прямую в точке U из этой точки проводим полуокружность радиусом m, она пересечёт другую полуокружность в точке Y. Получившейся треугольник равен по трём сторонам треугольнику из рис. 5, поэтому у них равны углы, угол перенесли.
(см. рис. 8) продлеваем стороны углов до их пересечения, всё лишнее можно стереть. Получившиеся фигура это ромб с заданными диагональю и углом.
Путешествие во времени — гипотетическое перемещение человека или каких-либо объектов из настоящего в или будущее, в частности, с технического устройства, называемого «машиной времени».
Фотография 1941 года на открытии Голд-бридж в Британской Колумбии (Канада) запечатлела якобы путешественника во времени. В действительности, облик мужчины соответствует эпохе и отличается от собравшихся тем, что те одеты более официально. Очки «путешественника — хипстера» изобретены ещё в 1920-е годы, на футболке угадывается логотип «Монреаль Марунз»[1][2].
Объяснение:
вот все правильно
1. Введение.
Нам известна диагональ ромба (d) и противолежащий ей угол (α) (см. рис. 0).
2. Ход дальнейшего решения.
Найдём прилежащий к этой диагонали угол (см. рис. 1) он зелённого цвета, и построим ромб с через него.
3. Решение.
(см. рис. 2) Из вершины угла (α) проведём полуокружность радиусом r она пересечёт стороны угла в двух точках(C и A), соединим эти точки, теперь найдём середину этого отрезка.
Как найти середину: (см. рис. 3) на концах отрезка мы проводим полуокружность радиусом зрительно больше, чем половина (можно взять радиусом всего отрезка). Эти полуокружности пересекутся в двух точках соединяем их прямой, эта прямая пересечёт наш отрезок пополам, это верно т.к. полученной фигурой будет ромбом, а у ромба диагонали делятся пополам.
(см. рис. 4) нашли середину такого отрезка (H), теперь соединяем её и вершину угла, это будет биссектриса т.к. ΔBHC и ΔBHA равны по трём сторонам, а значит их соответственные углы равны. ΔBCA - равнобедренный, а BH - медиана, поэтому BH - высота и ∠BHC = 90°, получается, что ∠BCH и есть тот, которые мы искали.
(см. рис. 7) переносим получившийся зелёный угол 4 раза на диагональ (d) как показано.
Как перенести угол: (см. рис. 5) из вершины игла проводим полуокружность радиусом n, соединяем точки пересечения полуокружности со сторонами угла. Получился отрезок длиной m. (см. рис. 6) на прямой берём точку O из этой точки проводим полуокружность радиусом n, полуокружность пересечёт прямую в точке U из этой точки проводим полуокружность радиусом m, она пересечёт другую полуокружность в точке Y. Получившейся треугольник равен по трём сторонам треугольнику из рис. 5, поэтому у них равны углы, угол перенесли.
(см. рис. 8) продлеваем стороны углов до их пересечения, всё лишнее можно стереть. Получившиеся фигура это ромб с заданными диагональю и углом.