1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение:
1)Медианы треугольника пересекаются в одной точке вне треугольника - неверно
2)Высота, проведенная из вершины угла к гипотенузе, является средним пропорциональным между катетами прямоугольного треугольника - неверно
3)Площадь трапеции равна произведению полусуммы оснований на высоту -верно
Неверное: 1,2
II
1)Биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам - Верно
2)Отношение площадей подобных треугольников равно коэффициенту подобия - неверно
3)Гипотенуза прямоугольного треугольника меньше катета - неверно
Верно: 1
III
1)Медианы треугольника пересекаются и точкой пересечения делятся в отношении 2:1 , считая от вершины - верно
2)Высота, проведенная из вершины прямого угла на гипотенузу, делит гипотенузу на две равные части - неверно.
3)Площадь трапеции равна произведению полусуммы оснований на высоту - верно
Неверно: 2