Определение: "Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую". Если из двух ЛЮБЫХ точек, находящихся по одну сторону от прямой, на прямую опущены перпендикуляры, и они равны, то прямая, соединяющая эти две точки, параллельна данной прямой, так как фигура, образованная этими прямыми и перпендикулярами - прямоугольник. Противоположные стороны прямоугольника параллельны. Поэтому, соединив данное множество точек, находящихся на данном расстоянии от данной прямой, мы получим прямую, параллельную данной. Что и требовалось доказать.
Трапеция прямоугольная. Следовательно, тупой угол в ней противолежит прямому, и оба этих угла соединяются диагональю. Диагональ равна боковой стороне - значит, диагональ и боковая сторона трапеции являются боковыми сторонами равнобедренного треугольника, основанием которого служит большее основание трапеции. По свойству равнобедренного треугольника высота является медианой, т.е. делит основание пополам. Это означает, что большее основание в 2 раза больше меньшего основания трапеции. Тогда средняя линия трапеции в (2 + 1)/2 = 1,5 раза больше меньшего основания трапеции.
Следовательно, искомое соотношение средней линии трапеции к большему ее основанию равно 1,5/2 = 3:4
Если из двух ЛЮБЫХ точек, находящихся по одну сторону от прямой, на прямую опущены перпендикуляры, и они равны, то прямая, соединяющая эти две точки, параллельна данной прямой, так как фигура, образованная этими прямыми и перпендикулярами - прямоугольник. Противоположные стороны прямоугольника параллельны.
Поэтому, соединив данное множество точек, находящихся на данном расстоянии от данной прямой, мы получим прямую, параллельную данной. Что и требовалось доказать.
Следовательно, искомое соотношение средней линии трапеции к большему ее основанию равно 1,5/2 = 3:4
ответ: 3:4