№1. Обозначим одну сторону параллелограмма x, тогда другая сторона будет x+29. Периметр параллелограмма: 2x+2(x+29)=82 2x+2x+58=82 4x=24 x=6 x=6 - меньшая сторона параллелограмма.
№2. Найдем основание равнобедренного треугольника: 98-2*25=48 (Для нахождения площади треугольника можно воспользоваться разными формулами, например формулой Герона). Мы опустим высоту к основанию и найдем ее длину по теореме Пифагора. Т.к. высота к основанию в равнобедренном треугольнике является также медианой, то делит основание пополам. H= Найдем площадь треугольника S=
№3. Вписанный угол равен половине дуги, на которую он опирается. Значит нам надо найти дугу окружности AB, не содержащую точку С. 360°-(185°+43°)=132° Вписанный угол АСВ равен 132:2=66°
BC = AD = 12; АB = CD - противолежащие стороны параллелограмма равны.
Найдем длины сторон AB и CD:
Углы ВAЕ и EAD равны, т.к. АЕ – биссектриса угла А; углы BЕА и ЕАD равны как внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей АЕ. Значит, будут равны углы ВЕА и ВАЕ и поэтому треугольник АВЕ будет равнобедренным. В равнобедренном треугольнике боковые стороны равны, значит АВ = ВЕ.
Пусть СЕ рано х см, тогда ВЕ – (3х) см. Их сумма равна (х + 3х) см или 12 см.
Обозначим одну сторону параллелограмма x, тогда другая сторона будет x+29.
Периметр параллелограмма: 2x+2(x+29)=82
2x+2x+58=82
4x=24
x=6
x=6 - меньшая сторона параллелограмма.
№2.
Найдем основание равнобедренного треугольника: 98-2*25=48
(Для нахождения площади треугольника можно воспользоваться разными формулами, например формулой Герона).
Мы опустим высоту к основанию и найдем ее длину по теореме Пифагора. Т.к. высота к основанию в равнобедренном треугольнике является также медианой, то делит основание пополам.
H=
Найдем площадь треугольника S=
№3.
Вписанный угол равен половине дуги, на которую он опирается. Значит нам надо найти дугу окружности AB, не содержащую точку С. 360°-(185°+43°)=132°
Вписанный угол АСВ равен 132:2=66°
P ABCD = AB + BC + CD + AD
BC = AD = 12; АB = CD - противолежащие стороны параллелограмма равны.
Найдем длины сторон AB и CD:
Углы ВAЕ и EAD равны, т.к. АЕ – биссектриса угла А; углы BЕА и ЕАD равны как внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей АЕ. Значит, будут равны углы ВЕА и ВАЕ и поэтому треугольник АВЕ будет равнобедренным. В равнобедренном треугольнике боковые стороны равны, значит АВ = ВЕ.
Пусть СЕ рано х см, тогда ВЕ – (3х) см. Их сумма равна (х + 3х) см или 12 см.
х + 3х = 12;
4x =12;
x = 12 : 4;
x = 3 (см) – СЕ;
3х = 3 * 3 = 9 (см) – ВЕ.
АВ = СD = 9 cм.
P ABCD = 9 + 12 + 9 + 12 = 42 (cм).
ответ. 42 см.