1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.
Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.
2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.
докажем это.
рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.
Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.
модераторов не удалять задачу. Условие в ней дано с ошибкой. Причем эта задача даже на учительском ресурсе Фестиваль дана с таким же ошибочным условием. Т.к. медиана прямоугольного треугольника, проведенная из прямого угла к гипотенузе, равна половине гипотенузы, то гипотенуза равна 2*10=20 см. Если из площади находить высоту этого треугольника по формуле S=a*h:2, то h= 2S:а h=560:20=28 см при том, что гипотенуза равна 20, чего не может быть. --------------- При площади данного треугольника равной 28 см² h=56:20=2,8 см Тогда неважно, какой катет будет избран для того, чтобы определить расстояние от его середины до гипотенузы. Искомое расстояние ( см. рисунок) ВС в треугольнике НАМ или ТР в треугольнике КАН будет равным половине высоты, проведенной из прямого угла к гипотенузу КМ, т.к. является средней линией каждого из этих треугольников. Т.е. расстояние от середины любого катета до гипотенузы равно 2,8:2=1,4 см
1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.
Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.
2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.
докажем это.
рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.
Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.
Т.к. медиана прямоугольного треугольника, проведенная из прямого угла к гипотенузе, равна половине гипотенузы, то гипотенуза равна 2*10=20 см.
Если из площади находить высоту этого треугольника по формуле
S=a*h:2, то
h= 2S:а
h=560:20=28 см при том, что гипотенуза равна 20, чего не может быть.
---------------
При площади данного треугольника равной 28 см²
h=56:20=2,8 см
Тогда неважно, какой катет будет избран для того, чтобы определить расстояние от его середины до гипотенузы.
Искомое расстояние ( см. рисунок) ВС в треугольнике НАМ или ТР в треугольнике КАН будет равным половине высоты, проведенной из прямого угла к гипотенузу КМ, т.к. является средней линией каждого из этих треугольников.
Т.е. расстояние от середины любого катета до гипотенузы равно
2,8:2=1,4 см