1)Проведём в треугольнике СДЕ перпендикуляр из вершины С к основанию ДЕ. В равнобедренном треугольнике он является одновременно высотой, медианой и биссектрисой. Соединим точки F и Д, F и Е, F и К. Угол СДК=45 по условию. И угол ДСК=45, поскольку СК биссектриса. Значит треугольник СДК равнобедренный и ДК=СК. По теореме Пифагора СДквадрат=ДК квадрат+СК квадрат, или СДквадрат=2СК квадрат. 144*2= 2* СКквадрат. Отсюда СК=12.Искомое расстояние FК=корень из(СКквадрат+СFквадрат)=корень из(144+1225)=37. 2)
АВС и ДСА1. Соедини А1 и Д, В1 иС. ВС-проекция, В1С-наклонная и ВС перпендик ДС, значит В1С перпендик ДС. Угол В1СВ-искомый. ВС=12, tgB1CB=B1B/BC=корень из 3.
Sin(в квадрате)х = -сos2x
ОДЗ: х принадлежит R
Sin(в квадрате)х = -сos2x | cos2x = cos (в квадрате)x - sin(в квадрате)x
> sin(в квадрате)x = - cos(в квадрате)х + sin(в квадрате)x
> sin(в квадрате)x + cos(в квадрате)х - sin(в квадрате)x = 0
> квадраты синусов взаимно уничтожаются, остаётся косинус в квадрате икс
> cos(в квадрате)x = 0 -частный случай
> х = П/2 + Пn , где n принадлежит Z (множеству целых чисел).
ответ: П/2 + Пn , где n принадлежит Z.
1)Проведём в треугольнике СДЕ перпендикуляр из вершины С к основанию ДЕ. В равнобедренном треугольнике он является одновременно высотой, медианой и биссектрисой. Соединим точки F и Д, F и Е, F и К. Угол СДК=45 по условию. И угол ДСК=45, поскольку СК биссектриса. Значит треугольник СДК равнобедренный и ДК=СК. По теореме Пифагора СДквадрат=ДК квадрат+СК квадрат, или СДквадрат=2СК квадрат. 144*2= 2* СКквадрат. Отсюда СК=12.Искомое расстояние FК=корень из(СКквадрат+СFквадрат)=корень из(144+1225)=37.
2)
АВС и ДСА1. Соедини А1 и Д, В1 иС. ВС-проекция, В1С-наклонная и ВС перпендик ДС, значит В1С перпендик ДС. Угол В1СВ-искомый. ВС=12, tgB1CB=B1B/BC=корень из 3.
т.е ответ 60.