Скорее всего в задании имелось в виду, что точка касания окружности к боковой стороне делит её в отношении 9 : 16. Пусть имеем трапецию АВСД и вписанную окружность с центром в точке О. Проведём из центра окружности перпендикуляр к боковой стороне АВ в точку Е и отрезки АО и ВО. По свойству биссектрис углов трапеции треугольник АВО прямоугольный. Примем коэффициент пропорциональности деления АВ за к. По свойству высот из прямого угла имеем: АЕ/ОЕ = ОЕ/ВЕ. (16к/12) = (12/9к). 16к*9к = 12². Извлечём корень из обеих половин равенства. 3*4*к = 12, к = 12/12 = 1. Значит, боковая сторона равна 9+16 = 25 см. По свойству описанной равнобедренной трапеции боковая сторона равна средней линии L трапеции. Отсюда получаем ответ: S(АВСД) = Н*L = 24*25 = 600 см².
См. чертеж. Из того, что CM - медиана, следует KD II AB; (если это - неизвестный факт, то достаточно записать теорему Чевы в виде (CD/DA)*(AM/MB)*(BK/KC) =1; откуда CD/AD = CK/BK; => KD II AB) ABKD - трапеция; => KD/BA = OD/OB = 1/5; DK = BA/5; То есть прямая KD отсекает от ABC подобные ему треугольник, размеры которого в 5 раз меньше. В частности, CD = AC/5; Далее, MN = (4/5)*CM = 4; ON/OM = OD/OB = 1/5; => NO = (1/6)*MN; MO = (5/6)*MN = 10/3; CO = 5 - 10/3 = 5/3; откуда из прямоугольного треугольника DOC CD = 4/3; (этот треугольник получился "египетский", подобный 3,4,5) AC = 5*CD = 20/3;
Пусть имеем трапецию АВСД и вписанную окружность с центром в точке О.
Проведём из центра окружности перпендикуляр к боковой стороне АВ в точку Е и отрезки АО и ВО.
По свойству биссектрис углов трапеции треугольник АВО прямоугольный.
Примем коэффициент пропорциональности деления АВ за к.
По свойству высот из прямого угла имеем: АЕ/ОЕ = ОЕ/ВЕ.
(16к/12) = (12/9к).
16к*9к = 12².
Извлечём корень из обеих половин равенства.
3*4*к = 12,
к = 12/12 = 1.
Значит, боковая сторона равна 9+16 = 25 см.
По свойству описанной равнобедренной трапеции боковая сторона равна средней линии L трапеции.
Отсюда получаем ответ: S(АВСД) = Н*L = 24*25 = 600 см².
Из того, что CM - медиана, следует KD II AB; (если это - неизвестный факт, то достаточно записать теорему Чевы в виде (CD/DA)*(AM/MB)*(BK/KC) =1; откуда CD/AD = CK/BK; => KD II AB)
ABKD - трапеция; => KD/BA = OD/OB = 1/5; DK = BA/5;
То есть прямая KD отсекает от ABC подобные ему треугольник, размеры которого в 5 раз меньше. В частности, CD = AC/5;
Далее, MN = (4/5)*CM = 4; ON/OM = OD/OB = 1/5;
=> NO = (1/6)*MN; MO = (5/6)*MN = 10/3; CO = 5 - 10/3 = 5/3;
откуда из прямоугольного треугольника DOC CD = 4/3; (этот треугольник получился "египетский", подобный 3,4,5)
AC = 5*CD = 20/3;