Знайдіть висоту та катети прямокутного трикутника. Висота проведена з вершини прямого кута і поділяє гіпотенузу на відрізки 18 см і 32 см. Висота дорівнює
• 3. Теперь, мы узнаём сторону квадрата. Это записывается так:
3)900 : 4 = 225 ( м ) – сторона квадрата
• 4. А теперь, мы можем узнать площадь квадрата, и потом в пятом действии записать и сравнить, чья площадь больше – квадрата или прямоугольника. Но смотря, какая у вас программа : если у вас программа Л.Г. Петерсона, то записывать нужно, но, а если у вас программа Рудницкой или Моро и др., то не нужно. Это записывается так:
4)225 ˣ 225 = 50 625 ( м² )
• 5. А вот когда мы узнали площадь квадрата и прямоугольника, то мы можем сравнить, чья площадь больше. Это записывается так:
5)50 625 > 32 400
• или...
5)32 400 < 50 625
• 6. А вот на сколько площадь квадрата больше площади прямоугольника мы не знаем. Но мы можем решить! Для этого нам нужно:
6)50 625 – 32 400 = 18 225 ( м )
— | Мы узнали то, что площадь квадрата больше площади прямоугольника. И на сколько. Мы можем записать ответы. ответы, потому что у нас в данной задаче два во ответ: Площадь участка квадратной формы больше площади участка прямоугольной формы; на 18 225 м площадь участка квадратной формы больше площади участка прямоугольной формы.
` ` — Здравствуйте, Levva007! ` `
• Объяснение:
— | Прежде чем нам решить данную задачу, сначала нужно отметить в ней главные слова: | —
• Первый участок имеет форму прямоугольника со сторонами 360 м и 90 м, второй участок имеет форму квадрата.
— | Отметили. Теперь, когда мы знаем главные слова в данной задаче, мы можем начать её решать. | —
• Решение:
• 1. Сначала, мы с вами должны узнать площадь прямоугольника. Это записывается так:
1)360 ˣ 90 = 32 400 ( м² ) – площадь прямоугольника.
• 2. Теперь, мы можем узнать периметр прямоугольника. Это записывается так:
2)360 ˣ 2 + 90 ˣ 2 = 900 ( м ) – периметр прямоугольника
• 3. Теперь, мы узнаём сторону квадрата. Это записывается так:
3)900 : 4 = 225 ( м ) – сторона квадрата
• 4. А теперь, мы можем узнать площадь квадрата, и потом в пятом действии записать и сравнить, чья площадь больше – квадрата или прямоугольника. Но смотря, какая у вас программа : если у вас программа Л.Г. Петерсона, то записывать нужно, но, а если у вас программа Рудницкой или Моро и др., то не нужно. Это записывается так:
4)225 ˣ 225 = 50 625 ( м² )
• 5. А вот когда мы узнали площадь квадрата и прямоугольника, то мы можем сравнить, чья площадь больше. Это записывается так:
5)50 625 > 32 400
• или...
5)32 400 < 50 625
• 6. А вот на сколько площадь квадрата больше площади прямоугольника мы не знаем. Но мы можем решить! Для этого нам нужно:
6)50 625 – 32 400 = 18 225 ( м )
— | Мы узнали то, что площадь квадрата больше площади прямоугольника. И на сколько. Мы можем записать ответы. ответы, потому что у нас в данной задаче два во ответ: Площадь участка квадратной формы больше площади участка прямоугольной формы; на 18 225 м площадь участка квадратной формы больше площади участка прямоугольной формы.
` ` — С уважением, EvaTheQueen! ` `
-Чому дорівнює сума кутів трикутника? 180 градусів
- Який кут називається зовнішнім? Зовнішній кут — це кут, суміжний з кутом даного трикутника.
- Чому дорівнює градусна міра зовнішнього кута? Сумі градусних мір двох інших внутрішніх кутів.
- Яка сторона трикутника є найбільшою? Та, яка лежить навпроти найбільшого кута.
- Нерівність трикутника.
- Який трикутник є прямокутним? Той, у якого кут 90 градусів.
- Як називаються сторони прямокутного трикутника? Катети та гіпотенуза.
- Чому дорівнює сума його гострих кутів? 90 градусів
- Чому дорівнюють кути рівнобедреного прямокутного трикутника? 45,45,90
- Ознаки рівності прямокутних трикутників
якщо дві сторони та кут між ними одного трикутника дорівнює двом сторонам а куту між ними іншого, то ці трикутники рівні.
якщо сторона та два прилеглих до неї кути одного трикутника рівні стороні та двом прилеглим до неї кутам іншого, то ці трикутники рівні
якщо три сторони одного трик рівні трьом сторонам іншого, то ці трик рівні.
- Властивість катете, що лежить напроти кута 30. Той катет дорівнює половині гіпотенузи.
Де знайти завдання 3?