Знайдіть внутрішні односторонні кути при паралельних прямих і січній, якщо: а) гострий кут на 30º менший від тупого кута; б) тупий кут у 5 разів більший за гострий кут.
Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки, на которые высота из прямого угла делит гипотенузу. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Отсюда h² =12*3=36 h=6 По теореме Пифагора из треугольников, на которые высота разделила исходный треугольник, найти катеты сложности не представляет. Меньший катет равен 3√5, больший - 6√5 Проверка: Квадрат гипотенузы равен (3√5)²+ (6√5)²=225 Гипотенуза равна √225=15, что соответствует условию задачи.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Отсюда h² =12*3=36
h=6
По теореме Пифагора из треугольников, на которые высота разделила исходный треугольник, найти катеты сложности не представляет.
Меньший катет равен 3√5,
больший - 6√5
Проверка:
Квадрат гипотенузы равен (3√5)²+ (6√5)²=225
Гипотенуза равна √225=15, что соответствует условию задачи.
Объяснение:
1.
Проводим радиусы из А, В, С, Д к центру окружности и получаем равнобедренные треугольники АВО и СДО
Доказываем равенство треугольников по 3 сторонам (основания равны по условию, а боковые стороны - равные радиусы)
ОЕ и ОФ - высоты, т.к. делят основания пополам
раз треугольники равны, то и высоты равны
2.
в треугольнике АСН - гипотенуза АС=8, а противолежащий катет СН=4
Из свойства прямоугольного треугольника с углом 30 получаем что угол А= 30,
Возвращаемся к треугольнику АВС: угол С - прямой, А=30 следовательно искомый угол В=60