1. Линия, соединяющая середину диагонали АС и середину стороны АD, является средней линией треугольника АСD и параллельна основанию CD, следовательно, равна 1/2 CD = 8 : 2 = 4 см.
2. Линия, соединяющая середину диагонали BD и середину стороны АD, является средней линией треугольника АВD и параллельна основанию АВ, следовательно, равна 1/2 АВ = 6 : 2 = 3 см.
3. Линия, соединяющая середину диагонали BD и середину стороны ВС, является средней линией треугольника ВСD и параллельна стороне СD, следовательно, равна 1/2 CD = 8 : 2 = 4 см.
4. Линия, соединяющая середину диагонали AC и середину стороны ВС, является средней линией треугольника АВС и параллельна стороне АВ, следовательно, равна 1/2 АВ = 6 : 2 = 3 см.
5. Периметр четырёхугольника, вершины которого лежат в
серединах сторон BC и AD и в серединах диагоналей AC и BD, равен:
∠2 и ∠6 являются соответственными углами при пересечении прямых a и b секущей c;
∠2 = ∠6, поэтому a║b.
∠2 = ∠4, как вертикальные углы при a∩c, ∠4 = 63°.
∠4 = ∠8, как соответственные углы при a║b и секущей с, ∠8 = 63°.
∠1 и ∠2 являются смежными углами при a∩c, сумма смежных углов равна 180°;
∠1 = 180°-∠2 = 180°-63° = 117°.
∠1 = ∠3, как вертикальные углы при a∩c, ∠3 = 117°.
∠3 = ∠7, как соответственные углы при a║b и секущей c, ∠7 = 117°.
∠5 = ∠7, как вертикальные углы при b∩c, ∠5 = 117°.
ответ: ∠1 = ∠3 = ∠5 = ∠7 = 117°; ∠4 = ∠8 = 63
Объяснение:
14 см
Объяснение:
1. Линия, соединяющая середину диагонали АС и середину стороны АD, является средней линией треугольника АСD и параллельна основанию CD, следовательно, равна 1/2 CD = 8 : 2 = 4 см.
2. Линия, соединяющая середину диагонали BD и середину стороны АD, является средней линией треугольника АВD и параллельна основанию АВ, следовательно, равна 1/2 АВ = 6 : 2 = 3 см.
3. Линия, соединяющая середину диагонали BD и середину стороны ВС, является средней линией треугольника ВСD и параллельна стороне СD, следовательно, равна 1/2 CD = 8 : 2 = 4 см.
4. Линия, соединяющая середину диагонали AC и середину стороны ВС, является средней линией треугольника АВС и параллельна стороне АВ, следовательно, равна 1/2 АВ = 6 : 2 = 3 см.
5. Периметр четырёхугольника, вершины которого лежат в
серединах сторон BC и AD и в серединах диагоналей AC и BD, равен:
(4 + 3) · 2 = 14 cм.
ответ: 14 см