ответ: 1) У рівносторонньому трикутнику радіус вписаного кола у два рази більший за радіус описаного кола. Медіана рівностороннього трикутника дорівнює сумі радіусів описаного кола та вписаного кола. Медіана рівностороннього трикутника дорівнює сумі висоти та бісектриси трикутника. 2) хз 3)У рівносторонньому трикутнику радіус вписаного кола у два рази більший за радіус описаного кола. Медіана рівностороннього трикутника дорівнює сумі радіусів описаного кола та вписаного кола. Медіана рівностороннього трикутника дорівнює сумі висоти та бісектриси трикутника. 4) ответ: Так (как написать придумаешь)
ответ: 1) У рівносторонньому трикутнику радіус вписаного кола у два рази більший за радіус описаного кола. Медіана рівностороннього трикутника дорівнює сумі радіусів описаного кола та вписаного кола. Медіана рівностороннього трикутника дорівнює сумі висоти та бісектриси трикутника. 2) хз 3)У рівносторонньому трикутнику радіус вписаного кола у два рази більший за радіус описаного кола. Медіана рівностороннього трикутника дорівнює сумі радіусів описаного кола та вписаного кола. Медіана рівностороннього трикутника дорівнює сумі висоти та бісектриси трикутника. 4) ответ: Так (как написать придумаешь)
Объяснение:
Якщо до кола з однієї точки проведені дві дотичних, то довжини відрізків дотичних від цієї точки до точок дотику з окружністю рівні:
СА = СВ
Дотична перпендикулярна до радіуса кола, проведеного в точку дотику, значить ∠ОАС = ∠ОВС = 90°.
ΔОАС = ΔОВС за трьома сторонами (ОС - загальна, ОА = ОВ як радіуси, СА = СВ, як було з'ясовано вище.
Значить, ∠АОC = ∠ВОC = ∠BOA/2 = 120/2 = 60°.
З ΔОАС знайдемо ∠АСO = 180−60−90 = 30°.
Якщо катет лежить навпроти кута в 30°, він рівний половині гіпотенузи.
У нашому випадку, катет∠АO лежить навпроти кута ∠АСO в 30° ⇒
⇒ гіпотенуза OC = 2×AO = 2×12 = 24 см.
Відповідь: довжина відрізка СО рівна 24 см.