Верно, прямая А1О лежит в плоскости DA1B . Точка А1 принадлежит пл. DA1B ( название этой точки даже входит в обозначение плоскости). Точка О - середина диагонали АС квадрата АВСD ,лежит и на диагонали BD, так как диагонали квадрата пересекаются и в точке пересечения делятся пополам. Значит точка О принадлежит не только диагонали АС, но и диагонали BD. Прямая же BD принадлежит пл. DA1B, значит и все точки этой прямой принадлежат указанной плоскости, то есть точка О ∈ пл. DA1B . Таким образом , две точки А1 и О принадлежат одной плоскости, значит и прямая, проходящая через эти точки принадлежит плоскости DA1B .
Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral
Точка А1 принадлежит пл. DA1B ( название этой точки даже входит в обозначение плоскости). Точка О - середина диагонали АС квадрата
АВСD ,лежит и на диагонали BD, так как диагонали квадрата пересекаются и в точке пересечения делятся пополам. Значит точка О принадлежит не только диагонали АС, но и диагонали BD. Прямая же BD принадлежит пл. DA1B, значит и все точки этой прямой принадлежат указанной плоскости, то есть точка О ∈ пл. DA1B .
Таким образом , две точки А1 и О принадлежат одной плоскости, значит и прямая, проходящая через эти точки принадлежит плоскости DA1B .