Пусть есть пирамида SABCD. Так как пирамида правильная, в основании лежит квадрат ABCD со стороной 14 см. Основание высоты пирамиды совпадает с центром квадрата. Боковые грани равнобедренные треугольники. Высота боковой грани – апофема. Полная поверхность S = Sбок + Sосн , Sбок = Pl/2 , где Р периметр основания, Sосн = a^2, Sосн = 14·14 = 196 (смˆ2), Р = 4·а = 4·14 = 56 (см). Найдем апофему Рассмотрим треугольник , который образует апофема, высота пирамиды и отрезок, соединяющий основание апофемы и центр квадрата и равен половине стороны квадрата 7 см. Треугольник прямоугольный, отрезок - катет, апофема – гипотенуза , угол 45°, апофема = катет/cos 45° = 7/cos 45° = 7/√2/2 = 7√2 ; Sбок = 56·7√2/2 = 196√2, S = 196√2 + 196 = 196(1 +√2) Смˆ2
MN II AB как средняя линия в треугольнике ABC; ML II CD как средняя линия BCD; KL II AB как средняя линия ABD; KN II CD как средняя линия ACD; Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм. По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны. Так же по условию KN = LN, то есть треугольник KNL равносторонний. Следовательно ∠NKL = 60°; Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.
ML II CD как средняя линия BCD;
KL II AB как средняя линия ABD;
KN II CD как средняя линия ACD;
Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм.
По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны.
Так же по условию KN = LN, то есть треугольник KNL равносторонний.
Следовательно ∠NKL = 60°;
Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.