Так как ширина окантовки одинакова, примем её за х (см), тогда : (2х + 19) см - это ширина картины с окантовкой (2х + 32) см - это длина картины с окантовкой (2х + 19) * (2х + 32) - это площадь картины с окантовкой Составим уравнение: (2х + 19) * (2х + 32) = 1080 4х^2 + 34 x + 64x + 608 = 1080 4x^2 + 102x - 472 = 0 ( : на 2) 2x^2 + 51 - 236 = 0 D = 2601 - 4(-236)(2) = 2601 + 1888 = 4489; YD = 67 x1 = (- 51 + 67) / 4 = 16/4 = 4 x2 = (-51 -67) / 4 = - 29,5 ( не подходит по условию задачи) ответ: 4см - ширина окантовки
тогда :
(2х + 19) см - это ширина картины с окантовкой
(2х + 32) см - это длина картины с окантовкой
(2х + 19) * (2х + 32) - это площадь картины с окантовкой
Составим уравнение:
(2х + 19) * (2х + 32) = 1080
4х^2 + 34 x + 64x + 608 = 1080
4x^2 + 102x - 472 = 0 ( : на 2)
2x^2 + 51 - 236 = 0
D = 2601 - 4(-236)(2) = 2601 + 1888 = 4489; YD = 67
x1 = (- 51 + 67) / 4 = 16/4 = 4
x2 = (-51 -67) / 4 = - 29,5 ( не подходит по условию задачи)
ответ: 4см - ширина окантовки
SABC - правильная треугольная пирамида, SO = 8 (м) -высота, SK = 10(м) - апофема.
Найти: S (бок).
Решение:
1.С прямоугольного треугольника SKO(угол SOK =90градусов)
за т. Пифагора
SK²= OK² + SO²
OK²=SK²-SO²
2. Отрезок ОК равен 1/3ВК (так как ВК - высота равностороннего тр-ка АВС), тогда
BK = 3*OK = 3*6=18 (см)
3.Определяем сторону треугольника АВС
Все углы у равностороннего треугольника по 60,
Сторона АС = BK/sin60
Наконец-то определяем S (бок)
ответ: S(бок) = 324√3 (см²).