В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Louis12
Louis12
12.09.2022 16:04 •  Геометрия

Знайдить другую Диагональ ромба сторона якого доривнюе 17 см а одна из диагоналей становить 16 см​

Показать ответ
Ответ:
ivanovayo08
ivanovayo08
19.05.2022 10:05
Высота призмы (ее боковое ребро) равно а, тк лежит против угла в 30 гр в прямоугольном треугольнике.
Сторонаа ромба равна sqrt(4*a^2 - a^2)=a*sqrt(3)
Если из вершины тупого угла ромба опустить на основание ромба перпенд то он отечет на стороне ромба отрезок (a*sqrt(3))/2 тк также лежит в прямоуг треуг против угла в 30 гр
Тогда высота ромба будет sqrt(3*a^2 - (3*a^2)/4) = 3*a/2
Площадь ромба - произв. основания на высоту будет (3*sqrt(3)*a^2)/2
Объем призмы ( (3*sqrt(3)*a^2)/2) * а = 3*sqrt(3)*a^3)/2
sqrt - квадратный корень, ^ - возведение в квадрат.
0,0(0 оценок)
Ответ:
alsusetyarova05
alsusetyarova05
21.07.2021 10:09

Вариант 1. Отношение катетов равно ВС/АС = 1.

Вариант 2. Отношение  равно ВС/АС = √(√5+1)/2).

Объяснение:

Уточним условие. Катет и его проекция (на гипотенузу) равными быть не могут, так как наклонная не может быть равна проекции. Высота, проведенная из прямого угла прямоугольного треугольника может быть равной проекции данного нам катета. Значит есть два варианта:

Первый: Один из катетов прямоугольного треугольника равен 7см, а высота, проведенныя из прямого угла, так же равна 7 см..

Второй: Один из катетов прямоугольного треугольника равен 7см и является высотой этого треугольника. Проекция второго катета на гипотенузу так же равна 7см.  

Тогда решение:

Вариант 1.

Проведем высоту СН к гипотенузе.

Тогда по условию СН = АН = 7 см.

Прямоугольный треугольник АНС равнобедренный, так как катеты равны (СН=АН). =>   ∠САВ = 45°  =>

В треугольнике АВС  ∠АВС = 45°  (по сумме острых углов прямоугольного треугольника) => треугольник равнобедренный (углы при основании равны) => катеты треугольника АВС равны и их отношение равно 1.

Вариант2.

Пусть дан прямоугольный треугольник АВС с прямым углом С. Высота из прямого угла СН² =  АН·ВН - свойство этой высоты.

Пусть АС = 7 см. Тогда ВН = 7см, АН = х см, АВ = (7+х)см.

По Пифагору:  ВС² = АВ² - АС² или ВС² = (7+х)² - 7². (1)

В прямоугольном треугольнике ВСН по Пифагору

ВС² = СН²+7². (2). СН² =  7·х (по свойству). =>

ВС² = 7·х+49.  (2)

Приравняв (1) и (2), получим: (7+х)² - 7² = 7х+49.  =>

49+14х+х² - 49 = 7х+49  =>  х²+7х-49 = 0.

х = (-7+√(49+4·49))/2  =  (-7+7√5)/2 см = 7(√5-1)/2.

Второй корень отрицательный и не удовлетворяет условию.

Итак, катет ВС =  √(7х +49) =>

ВС = √(49·(√5-1)/2 +49) = 7√(√5-1)/2 +1) = 7√(√5+1)/2).

ВС/АС = √(√5+1)/2).


Знайдіть відношення катетів прямокутного трикутника, якщо висота і проекція одного з катетів дорівню
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота