Так как по условию, точки М, К, Р середины отрезков АВ, ВД, ВС, то отрезок КМ средняя линия треугольника АВД, КР – средняя линия треугольника ВСД, МР – средняя линия треугольника АВС.
Отрезки средних линий параллельны основаниям треугольников: MK || АД, КР || СД, МР || АС, тогда и плоскость МКР параллельны плоскости АСД, что и требовалось доказать.
Длина средней линии треугольника равна половине длины параллельной стороны, тогда треугольник МКР подобен треугольнику АСД по трем пропорциональным сторонам с коэффициентом подобия К = АД / МК = АД / (АД / 2) = 2.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Площадь боковой поверхности правильного тетраэдра равна: Sбок = (3/4)√3а², где а - длина его стороны. 108√3 = (3/4)√3а² Находим а = √(108*4/3) = √(36*4) = 6*2 = 12 см. Стороны треугольника ДОТ равны половине а, то есть в = 12/2 = 6 см, Радиус окружности, вписанной в правильный треугольник, равен: r = b / (2√3) = 6 / (2√3) = 3 / √3 = √3 см. Радиусы в точки касания делят окружность на 3 дуги, градусная мера которых составляет 360 / 3 = 120°. Площадь сектора, ограниченного двумя радиусами, проведенными в точки касания, и другой окружности, большей 180° -это 2/3 площади круга: S = (2/3)πr² = π*(2*(√3)²/3=2π см².
Так как по условию, точки М, К, Р середины отрезков АВ, ВД, ВС, то отрезок КМ средняя линия треугольника АВД, КР – средняя линия треугольника ВСД, МР – средняя линия треугольника АВС.
Отрезки средних линий параллельны основаниям треугольников: MK || АД, КР || СД, МР || АС, тогда и плоскость МКР параллельны плоскости АСД, что и требовалось доказать.
Длина средней линии треугольника равна половине длины параллельной стороны, тогда треугольник МКР подобен треугольнику АСД по трем пропорциональным сторонам с коэффициентом подобия К = АД / МК = АД / (АД / 2) = 2.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Sавс / Sмкр = 48 / Sмкр = 22.
Sмкр = 48 / 4 = 12 см2.
ответ: Площадь треугольника МКР равна 12 см2.
Sбок = (3/4)√3а², где а - длина его стороны.
108√3 = (3/4)√3а²
Находим а = √(108*4/3) = √(36*4) = 6*2 = 12 см.
Стороны треугольника ДОТ равны половине а, то есть в = 12/2 = 6 см,
Радиус окружности, вписанной в правильный треугольник, равен:
r = b / (2√3) = 6 / (2√3) = 3 / √3 = √3 см.
Радиусы в точки касания делят окружность на 3 дуги, градусная мера которых составляет 360 / 3 = 120°.
Площадь сектора, ограниченного двумя радиусами, проведенными в точки касания, и другой окружности, большей 180° -это 2/3 площади круга: S = (2/3)πr² = π*(2*(√3)²/3=2π см².