Обозначим треугольник АВС. АВ основание, угол С прямой. Из С на АВ опустим высоту СД. Она делит треугольник АВС на два подобных треугольника площади которых относятся как квадраты сходственных сторон . Пусть ДВ=Х, СД=Н, тогда Scдв/Scда=Хквадрат/Н квадрат=4/16. Отсюда Х=H/2. Площадь треугольника СДВ равна Sсдв=1/2*Х*Н=4. Подставляем значение Х, получим Sсдв=1/2*H/2*H=4. Отсюда Н=4. Тогда Х=Н/2=2. Площадь треугольника АВС равна Sавс=1/2*АВ*Н=16+4. Подставляем Н, получим Sавс=1/2*АВ*4=20, отсюда АВ=10.
Медиана - это отрезок прямой из вершины угла к стороне, который делит эту сторону на две равные части. Значит, в получившихся треугольниках основания равны половине гипотенузы. Высота у них одна и та же - из вершины прямого угла к основанию. В одном - остроугольном - она внутри треугольника, во втором - тупоугольном- вне треугольника. Площадь треугольника вычисляют по формуле S =аН Основания в этих треугольниках равны, высота - общая. Площади этих треугольников равны. Что и требовалось доказать.
Обозначим треугольник АВС. АВ основание, угол С прямой. Из С на АВ опустим высоту СД. Она делит треугольник АВС на два подобных треугольника площади которых относятся как квадраты сходственных сторон . Пусть ДВ=Х, СД=Н, тогда Scдв/Scда=Хквадрат/Н квадрат=4/16. Отсюда Х=H/2. Площадь треугольника СДВ равна Sсдв=1/2*Х*Н=4. Подставляем значение Х, получим Sсдв=1/2*H/2*H=4. Отсюда Н=4. Тогда Х=Н/2=2. Площадь треугольника АВС равна Sавс=1/2*АВ*Н=16+4. Подставляем Н, получим Sавс=1/2*АВ*4=20, отсюда АВ=10.