Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: AC²=AB²+BC²-2*AB*BC*cos∠B Известно, что АВ=ВС+4. Подставляем все известные значения в формулу: 14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120° 196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2) 196=2BC²+8BC+16+BC²+4BC 3BC²+12BC-196+16=0 3BC²+12BC-180=0 |:3 BC²+4BC-60=0 D=4²-4*(-60)=16+240=256=16² BC=(-4-16)/2=-10 - не подходит BC=(-4+16)/2=6 см АВ=6+4=10 см
Дано:
Окружность (O;R)
ΔAOB
AB = 32 дм
OC = 12 дм
-----------------------------------
Найти:
C - ?
1. Хорда AB = 32 дм
OC = 12 дм (расстояние от центра до хорды)
AC = CB = 1/2AB = 1/2 × 32 дм = 16 дм
2. ΔOCB — прямоугольный, так как ∠BCO — прямой.
По теореме Пифагора: BO = √OC² + CB²
BO = √(12 дм)² + (16 дм)² = √144 дм² + 256 дм² = √400 дм² = 20 дм ⇒ R = BO = 20 дм
3. Воспользуемся формулой длины окружности, именно по такой формуле мы найдем длину окружности: C = 2πR
C = 2π × 20 дм = 40π дм = 40×3,14 дм = 125,6 дм
ответ: C = 125,6 дм
AC²=AB²+BC²-2*AB*BC*cos∠B
Известно, что АВ=ВС+4. Подставляем все известные значения в формулу:
14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120°
196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2)
196=2BC²+8BC+16+BC²+4BC
3BC²+12BC-196+16=0
3BC²+12BC-180=0 |:3
BC²+4BC-60=0
D=4²-4*(-60)=16+240=256=16²
BC=(-4-16)/2=-10 - не подходит
BC=(-4+16)/2=6 см
АВ=6+4=10 см
ответ: АВ=10 см, ВС=6 см.