В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Проведем окружность с центром в точке В произвольного радиуса. Точки пересечения этой окружности со сторонами угла АВС обозначим E и F.
Проведем окружность с тем же радиусом с центром в точке D. L - точка пересечения окружности с лучом DK.
Проведем окружность с центром в точке Е и радиусом EF, и такую же окружность с центром в точке L. Р - одна из точек пересечения этой окружности с первой.
Затем построим такую же окружность с центром в точке Р. Обозначим точку ее пересечения с первой окружностью N.
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас
Проведем окружность с центром в точке В произвольного радиуса. Точки пересечения этой окружности со сторонами угла АВС обозначим E и F.
Проведем окружность с тем же радиусом с центром в точке D. L - точка пересечения окружности с лучом DK.
Проведем окружность с центром в точке Е и радиусом EF, и такую же окружность с центром в точке L. Р - одна из точек пересечения этой окружности с первой.
Затем построим такую же окружность с центром в точке Р. Обозначим точку ее пересечения с первой окружностью N.
Через точку N проведем луч DM.
Угол MDK - искомый.