Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
Сторона, к которой проведена высота, равна 3+12=15 м.
Высоту нужно найти.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
h²=3*12=36
h=√36=6 (м)
Ѕ=h*a:2
S=6*15:2=45 м²
Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы:
Р=a+b+c
а=√(3*15)=3√5 м
b=√(12*15)=6√5 м
Р=15+9√5 (м)
Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
4.
H - высота цилиндра и D - диаметр основания цилиндра образуют квадрат. Следовательно, H = D = √ 16 = 4 (м)
Площадь боковой поверхности цилиндра
Sбок = π · D · H = π · 4 · 4 = 16 π (м²) ≈ 50,27 м²
Объём цилиндра
V = V = 0,25πD² · H = 0.25 · π · 4² · 4 = 16 π ≈ 50,27 м³
5.
H - высота цилиндра и D - диаметр основания цилиндра образуют квадрат, то есть D = H.
Диагональ сечения d = √(D² + H²) = D√2
4 = D√2 ⇒ D = 2√2 (cм) H = 2√2 м
Объём цилиндра
V = 0,25πD² · H = 0.25 · π · (2√2)² · 2√2 = 4π√2 (см³) ≈ 17,77 см²