Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему. ==== Смотрите рисунок, приложенный к ответу. Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет, Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: Отсюда: Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше . Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
1)угол мnk=78:2=39 градусов-по св. вписанного угла.
Угол nok=180-78=102°-по св смежных углов
Х=180-102-39=39°
ответ:39°
2)ao=ob=r, значит этот треугольник равнобедренный и углы при основании равны по 60 градусов, а значит тругольник равносторонний и х=8
ответ:8
3)ol=om=r=32
По т пифагора х=примерно 45(но это не точно)
4)дуга kl=360-143-77=140°
Х=140:2=70°-по св вписанного угла
5)дуга mn=40*2=80°
Дуга sn=180-80=100°
ответ 100°
6)180-124=56°
Х=56:2=28°
ответ 28°
7)дуга mq=25*2=50°
Х=180-50=130°
ответ 130°
8)360-112-46=202°
Х=202:2=101°
ответ 101°
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет,
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть:
Отсюда:
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше .
Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
Найдем, наконец,
Это ответ.