Пусть угол А - х, тогда угол B - тоже х, а угол Bad = x/2 рассмотрим треугольник АДБ - угол Б равен 180 градусов -( 110 градусов + x/2) рассмотрим треугольник АБС угол Б равен 180 - 2х потом вычитаем из первого уравнения второе, в правой части у нас ноль (углы Б сократились) в левой части 2x-110-x/2 иксы в правую часть градусы в левую часть переносим итого у нас получается 1,5х=110 градусов x=углу А= углу С= 73 и 1/3 градусов (в ответе переведи в десятичные 73,33) Угол б равен 180 градусов минус 2х = 33 и 1/3 градуса (33.33)
Трапеция АВСД, АД=10, ВС=5, ВD=12, АС=9 S=54 проводим высоту СН на АД Площадь трапеции =1/2*(АД+ВС) * СН Из точки С проводим прямую параллельную ВД до пересечения с продолжением основания АД в точке К. Четырехугольник НВСК - параллелограмм, ВС=ДК=5, ВД=СК=9, АК=АД+ДК=10+5=15, СН - высота треугольника АСК площадь треугольника АСК = 1/2АК*СН, но АК=АД+ДК(ВС) т.е. площадь треугольника АСК=площадь трапеции АВСД, площадь треугольника АСК=корень(р * (р-АС)*(р-СК)*(р-АК)), где р -полупериметр полупериметр треугольника АСК=(12+9+15)/2=18 площадь треугольника АСК=корень(18 *6*9*3)=54 = площадь трапеции АВСД
проводим высоту СН на АД
Площадь трапеции =1/2*(АД+ВС) * СН
Из точки С проводим прямую параллельную ВД до пересечения с продолжением основания АД в точке К. Четырехугольник НВСК - параллелограмм, ВС=ДК=5, ВД=СК=9, АК=АД+ДК=10+5=15, СН - высота треугольника АСК
площадь треугольника АСК = 1/2АК*СН, но АК=АД+ДК(ВС)
т.е. площадь треугольника АСК=площадь трапеции АВСД,
площадь треугольника АСК=корень(р * (р-АС)*(р-СК)*(р-АК)), где р -полупериметр
полупериметр треугольника АСК=(12+9+15)/2=18
площадь треугольника АСК=корень(18 *6*9*3)=54 = площадь трапеции АВСД