1. Проведем высоту СК. Получили ВСКН прямоугольник. ВС = НК = 18 сантиметров.
2. Прямоугольный треугольник АВН = прямоугольному треугольнику СКЕ по гипотенузе и углу, так как угол А = угол Е, ВА = СЕ. Значит АН = КЕ = 9 сантиметров.
3. Рассмотрим прямоугольный треугольник АВН. Угол АВН = 180 - 45 - 90 = 45 (градусов). Тогда треугольник АНВ является равнобедренным. Следовательно ВН = НА = 9 сантиметров.
Дано:
равнобедренная трапеция АВСЕ,
ВС = 18 сантиметров,
ВН — высота,
ВН = 9 сантиметров,
угол ВАЕ = 45 градусов.
Найти S АВСЕ — ?
1. Проведем высоту СК. Получили ВСКН прямоугольник. ВС = НК = 18 сантиметров.
2. Прямоугольный треугольник АВН = прямоугольному треугольнику СКЕ по гипотенузе и углу, так как угол А = угол Е, ВА = СЕ. Значит АН = КЕ = 9 сантиметров.
3. Рассмотрим прямоугольный треугольник АВН. Угол АВН = 180 - 45 - 90 = 45 (градусов). Тогда треугольник АНВ является равнобедренным. Следовательно ВН = НА = 9 сантиметров.
4. Основание АЕ = АН + НК + КЕ = 9 + 18 + 9 = 36 (сантиметров).
5. S АВСЕ = (ВС + АЕ) * ВН = (18 + 36)/2 * 9 = 243 см^2.
ответ: 243 см^2.
Объяснение:
Дано:
AF и BD - прямые
AB = BС
∠АВС = 120°
АС - биссектриса ∠ВАЕ
∠CDE : ∠AED = 7 : 8
∠ DEF - ?
1) Сумма всех углов Δ = 180°:
∠ВАС + ∠В + ∠ВСА = 180° или
∠ВАС + ∠ВСА = 180° - 120° = 60°
2) ΔАВС - равнобедренный, т.к. АВ = ВС по условию.
В равнобедренном треугольнике углы при основании равны. Значит,
∠ВАС = ∠ВСА = 60° / 2 = 30°
3) АС - биссектриса ∠А по условию, следовательно,
∠ВАС = ∠ САЕ = 30°, а ∠ВАЕ = 2* 30° = 60°
4) ∠ВАЕ и ∠ АВС - односторонние углы, их сумма = 120° + 60° = 180°
Теорема: Если при пересечении двух прямых секущей сумма односторонних углов равна 1800, то прямые параллельны, значит,
АЕ ║BD
5) ∠CDE и ∠AED - тоже углы односторонние, и так как АЕ ║BD, то
∠CDE + ∠AED = 180° или
7х + 8х = 180° → х = 180°/15 = 12°
∠CDE = 7*12° = 84°
∠AED = 8 * 12 = 96°
6) ∠CDE = ∠DEF = 84°, так как они накрест лежащие углы при параллельных прямых BD и AE/