∠А =∠В = 90°; ∠С = 120°, значит ∠D = 60°, т.к. сумма всех углов = 360° (360 - 90 - 90 - 120 = 60). Сторона СD (большая боковая сторона) = 16 см и сторона АD (большее основание) = 16 см. Найти сторону ВС - меньшее основание.
1. Из вершины ∠С= 120° к нижнему основанию АД проведём высоту СЕ, которая разделила трапецию на прямоугольник, в котором противоположные стороны ВС=АЕ и АВ=СЕ и прямоугольный Δ ЕСD.
В Δ ЕСD ∠D = 60°, ∠СЕD = 90°, значит ∠ЕСD = 180 - (90 + 60) = 30°. Сторона СD (гипотенуза Δ ЕСD) = 16 см. Исходя из того, что катет ЕD , лежащий против угла в 30° равен половине гипотенузы СD , находим длину катета ЕD: ЕD = 16 : 2 = 8 (см).
Большее основание трапеции АD = АЕ + ЕD = 16 см, вычислим длину АЕ = АD - ЕD = 16 - 8 = 8 (см). Т.к. АЕ = ВС как противоположные стороны прямоугольника, значит АЕ = ВС = 8 (см).
1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°
Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:
Найдем при каком n угол будет равен 160°:
Т.е. угол в 160° будет у правильного 18-угольника
2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:
Подставим заданное значение стороны:
Следовательно, радиус окружности, описанной около этого треугольника равен 6 см
3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:
°
а радианная:
Длину дуги найдем как 8/15 от длины окружности:
см
ответ:8 см
Объяснение:
Дано:
прямоугольная трапеция.
Обозначим АBСD.
∠А =∠В = 90°; ∠С = 120°, значит ∠D = 60°, т.к. сумма всех углов = 360° (360 - 90 - 90 - 120 = 60). Сторона СD (большая боковая сторона) = 16 см и сторона АD (большее основание) = 16 см. Найти сторону ВС - меньшее основание.
1. Из вершины ∠С= 120° к нижнему основанию АД проведём высоту СЕ, которая разделила трапецию на прямоугольник, в котором противоположные стороны ВС=АЕ и АВ=СЕ и прямоугольный Δ ЕСD.
В Δ ЕСD ∠D = 60°, ∠СЕD = 90°, значит ∠ЕСD = 180 - (90 + 60) = 30°. Сторона СD (гипотенуза Δ ЕСD) = 16 см. Исходя из того, что катет ЕD , лежащий против угла в 30° равен половине гипотенузы СD , находим длину катета ЕD: ЕD = 16 : 2 = 8 (см).
Большее основание трапеции АD = АЕ + ЕD = 16 см, вычислим длину АЕ = АD - ЕD = 16 - 8 = 8 (см). Т.к. АЕ = ВС как противоположные стороны прямоугольника, значит АЕ = ВС = 8 (см).