Прямой называется призма, боковое ребро которой перпендикулярно плоскости основания. Все боковые грани прямой призмы прямоугольники.Основание призмы тоже прямоугольник (дано). а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей. б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору: bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору: bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5. Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5. ответ: тангенс искомого угла равен 0,5.
В задании надо было указать, каким методом дать решение. Один из них - определение длин сторон и по теореме косинусов определение углов треугольника, а по ним определяется вид треугольника. Обозначим вершины треугольника вместо M, N, K точками А, В и С. АВ = √((Хв-Ха)²+(Ув-Уа)²) = 7.211102551 BC = √((Хc-Хв)²+(Ус-Ув)²) = 11.3137085 AC = √((Хc-Хa)²+(Ус-Уa)²) = 12.16552506 cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = 0.4104 A = 1.1479 радиан = 65.772 градусов cos В= (АВ²+ВС²-АС²)/(2*АВ*ВС) = 0.1961 B = 1.3734 радиан = 78.69 градусов cos C= (АC²+ВС²-АD²)/(2*АС*ВС) = 0.8137 C = 0.6202 радиан = 35.538 градусов. Отсюда видно, что треугольник остроугольный.
а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей.
б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору:
bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору:
bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5.
Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5.
ответ: тангенс искомого угла равен 0,5.
Один из них - определение длин сторон и по теореме косинусов определение углов треугольника, а по ним определяется вид треугольника. Обозначим вершины треугольника вместо M, N, K точками А, В и С.
АВ = √((Хв-Ха)²+(Ув-Уа)²) = 7.211102551
BC = √((Хc-Хв)²+(Ус-Ув)²) = 11.3137085
AC = √((Хc-Хa)²+(Ус-Уa)²) = 12.16552506
cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = 0.4104
A = 1.1479 радиан = 65.772 градусов
cos В= (АВ²+ВС²-АС²)/(2*АВ*ВС) = 0.1961
B = 1.3734 радиан = 78.69 градусов
cos C= (АC²+ВС²-АD²)/(2*АС*ВС) = 0.8137
C = 0.6202 радиан = 35.538 градусов.
Отсюда видно, что треугольник остроугольный.