Сторона квадрата равна 12. Проекция точки на плоскость квадрата совпадает с центром квадрата. Расстояние от центра квадрата до стороны равно половине длины стороны и равно 6. Так как отрезок, соединяющий центр квадрата и середину стороны, перпендикулярен стороне, и является проекцией отрезка, соединяющего точку и середину стороны, отрезок, соединяющий точку и середину стороны, перпендикулярен этой стороне и является нужным расстоянием. В то же время, он является гипотенузой прямоугольного треугольника с катетами 6 и 8, тогда он равен 10.
1. снование равно 12,8, так треугольник равнобедренный, а боковая сторона равна 8
2. По признаку о равнобедренном треугольнике, что высота проведенная из вершины угла, является и биссектрисой и медианой, так как высота это медиана, то получается что высота делит треугольник пополам.
Сторона квадрата равна 12. Проекция точки на плоскость квадрата совпадает с центром квадрата. Расстояние от центра квадрата до стороны равно половине длины стороны и равно 6. Так как отрезок, соединяющий центр квадрата и середину стороны, перпендикулярен стороне, и является проекцией отрезка, соединяющего точку и середину стороны, отрезок, соединяющий точку и середину стороны, перпендикулярен этой стороне и является нужным расстоянием. В то же время, он является гипотенузой прямоугольного треугольника с катетами 6 и 8, тогда он равен 10.
1. снование равно 12,8, так треугольник равнобедренный, а боковая сторона равна 8
2. По признаку о равнобедренном треугольнике, что высота проведенная из вершины угла, является и биссектрисой и медианой, так как высота это медиана, то получается что высота делит треугольник пополам.
3. Мы получили прямоугольный треугольник
По теореме Пифагора находим высоту, то есть:
а^2+в^2=с^2 (где а и в-катеты, а с-гипотенуза)
пусть в-Х,
а=1/2 основная, что равно 6,4
с-боковая сторона, что по условию равно 8
подставим числа
8^2=6,4^2+х^2
64=40,96+х^2
х^2=23,04
х=4,8
ответ: расстоянИе от вершины равно 4,8