В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
Берем лист из тетради в клетку. 1) Проводим горизонтально линию в 6 клеток. От середины ( 3 клетки) вверх проводим отрезок 4 клетки, можно больше. Соединяем три конца. Получили остроугольный треугольник. 2). Проводим отрезок 8 клетки. Из середины ( 4 клетки) проводим вверх 4 клетки ровно. Соединяем концы отрезков. Этот треугольник прямоугольный.
3) Проводим горизонтально линию в 8 клеток.Из ее середины (4 клетки) чертим вверх отрезок 3 клетки. Соединяем. Это тупоугольный треугольник.
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.
Берем лист из тетради в клетку.
1)
Проводим горизонтально линию в 6 клеток.
От середины ( 3 клетки) вверх проводим отрезок 4 клетки, можно больше. Соединяем три конца. Получили остроугольный треугольник.
2).
Проводим отрезок 8 клетки. Из середины ( 4 клетки) проводим вверх 4 клетки ровно. Соединяем концы отрезков. Этот треугольник прямоугольный.
3)
Проводим горизонтально линию в 8 клеток.Из ее середины (4 клетки) чертим вверх отрезок 3 клетки. Соединяем. Это тупоугольный треугольник.
Все эти треугольники получатся равнобедренными.