Если известны стороны! Проведем две медианы к боковым сторонам треугольника. Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой. Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα Выразим медиану одного из образовавшихся треугольников по теореме косинусов. Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны. Подставив найденное значение cosα в уравнение медианы, найдем ее длину.
a) 100°; 40°; 40°.
б) 90°; 45°; 45°.
в) 50°; 65°; 65°.
Объяснение:
По теореме о сумме углов треугольника (сумма внутренних углов треугольника равна 180°).
В равнобедренном треугольнике углы при основании равны.
a) Значит, два угла при основании равны по 40°. Сумма углов при основании равна
40° + 40° = 80°
Зная это, найдем третий угол (при вершине):
180° - 80° = 100 (градусов) - угол при вершине.
б) Значит, на углы при основании остаётся:
180° - 90° = 90°
Так как они равны в равнобедренном треугольнике:
90° : 2 = 45 (градусов) - величина каждого угла при основании.
в) Значит, на углы при основании остаётся:
180° - 50° = 130°
Так как они равны в равнобедренном треугольнике:
130° : 2 = 65 (градусов) - величина каждого угла при основании.
Проведем две медианы к боковым сторонам треугольника.
Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой.
Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα
Выразим медиану одного из образовавшихся треугольников по теореме косинусов.
Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны.
Подставив найденное значение cosα в уравнение медианы, найдем ее длину.