Допустим, что Вы имели в виду, что наклонные проведены к одной плоскости. Проведем из этой же точки перпендикуляр к данной плоскости и получим два прямоугольных треугольника, у которых гипотенузы a и b (наклонные), а катеты - перпендикуляр h к плоскости (общий) и проекции наклонных, равные 8см и 20см. тогда по Пифагору имеем: h²=a²-20² и h²=b²-8². Или a²-400=b²-64. Но нам дано, что a=b+8. Подставим эти значения в уравнение: (b+8)²-400=b²-64 или b²+16b+64-400=b²-64. отсюда 16b=272 и b=17см. тогда а=b+8=25см. ответ: длины наклонных равны 25см и 17см
Проверка: h=√(25²-400)=√225=15 и h=√(17²-64)=√225=15.
Из точки А к плоскости проведены две наклонные АВ и АС, расстояние от А до плоскости - перпендикуляр АН, проекции наклонных - НВ и НС. 1) если АВ=х см, АС=х+26 см, НВ=12 см и НС=40 см. Из прямоугольных треугольников АВН и АСН по т. Пифагора выразим АН²=АВ²-НВ²=х²-144 и АН²=АС²-НС²=(х+26)²-1600=х²+52х-924. Приравниваем х²-144=х²+52х-924, х=780:52=15 см это АВ и АС=15+26=41 см. 2) если АВ=х см, АС=2х см, НВ=1 см и НС=7 см. Из прямоугольных треугольников АВН и АСН по т. Пифагора выразим АН²=АВ²-НВ²=х²-1 и АН²=АС²-НС²=4х²-49. Приравниваем х²-1=4х²-49, х²=48:3=16 см это АВ и АС=2*16=32 см.
b²+16b+64-400=b²-64. отсюда 16b=272 и b=17см. тогда а=b+8=25см.
ответ: длины наклонных равны 25см и 17см
Проверка: h=√(25²-400)=√225=15 и h=√(17²-64)=√225=15.