Дано: ABCD - прямоугольник, AB=DC= 12 см, BC=AD=16 см, AC и BD - диагонали ABCD, AC∩BD = т.О, K ∉ ABCD, OK⊥ABCD, КО=5√5 см.
Найти: АК.
Решение.
Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности => точка О - центр описанной около прямоугольника ABCD окружности.
Длины отрезков AO, OC, BO, OD равны между собой и равны радиусу описанной окружности.
AO=OC=BO=OD.
Если проекции наклонных, проведённых из одной точки, равны, то равны и наклонные. Соответственно, ВК=КС=КD=KA (поскольку проекции данных наклонных (ВО, СО, DO и AO) равны между собой).
Найдём диагональ прямоугольника ABCD.
В прямоугольном ΔBAD (∠BAD=90°) по т. Пифагора:
BD²= AB²+AD²;
BD²= 12²+16²;
BD²= 400;
BD= 20 (-20 не подходит).
Диагонали прямоугольника равны, пересекаются и в точке пересечения делятся пополам => BO=OD=АО=ОD=½ BD= 20÷2=10 (см).
В прямоугольном ΔАОК (∠AOK=90°) по т. Пифагора:
АК²= АО²+ОК²;
АК²= 10²+(5√5)²;
AK²= 100+125;
AK²= 225;
AK= 15 (-15 не подходит).
Расстояние от т.К до вершин прямоугольника равно 15 см.
Дано: ABCD - прямоугольник, AB=DC= 12 см, BC=AD=16 см, AC и BD - диагонали ABCD, AC∩BD = т.О, K ∉ ABCD, OK⊥ABCD, КО=5√5 см.
Найти: АК.
Решение.
Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности => точка О - центр описанной около прямоугольника ABCD окружности.
Длины отрезков AO, OC, BO, OD равны между собой и равны радиусу описанной окружности.
AO=OC=BO=OD.
Если проекции наклонных, проведённых из одной точки, равны, то равны и наклонные. Соответственно, ВК=КС=КD=KA (поскольку проекции данных наклонных (ВО, СО, DO и AO) равны между собой).
Найдём диагональ прямоугольника ABCD.
В прямоугольном ΔBAD (∠BAD=90°) по т. Пифагора:
BD²= AB²+AD²;
BD²= 12²+16²;
BD²= 400;
BD= 20 (-20 не подходит).
Диагонали прямоугольника равны, пересекаются и в точке пересечения делятся пополам => BO=OD=АО=ОD=½ BD= 20÷2=10 (см).
В прямоугольном ΔАОК (∠AOK=90°) по т. Пифагора:
АК²= АО²+ОК²;
АК²= 10²+(5√5)²;
AK²= 100+125;
AK²= 225;
AK= 15 (-15 не подходит).
Расстояние от т.К до вершин прямоугольника равно 15 см.
ОТВЕТ: 15 см.
P.S. Очень надеюсь, что все понятно расписала...)
Можно найти только УГЛЫ треугольника АВС.
Решение на всякий случай.
Биссектриса BD в ABC пересекает сторону AC под углом 100°, тогда если <ADB =100°, то <CDB = 80°, как смежный с ним.
В треугольнике DBC BD=BC (дано) => углы <BDC = CDВ = 80° как углы при основании равнобедренного треугольника.
<DBC = 180° - 2*80° = 20° по сумме внутренних углов треугольника.
А так как BD - биссектриса, то угол В = 40°.
<A = 180° - 80° - 40° = 60° (по сумме внутренних углов треугольника).
ответ: <A=60°, <B=40° и <C=80°.