В треугольнике АВС по теореме косинусов находим углы А и С: cos A = (b²+c²-a²) / (2bc) = (15²+8²-13²) / (2*15*8) = 120 / 240 = 1 / 2. A = arc cos (1/2) = 60°. cos C = (a²+b²-c²) / (2ab) = (13²+15²-8²) / (2*13*15) = 330 / 390 = 11 / 13 C = arc cos (11/13) = 32,20423°. Теперь определяем длину отрезка ВД = √(5²+8²-2*5*8*(1/2)) = √(25+64-40) = 7. В треугольниках ABD и CBD находим радиусы вписанных окружностей по формуле: r = √((p-a)(p-b)(p-c) / p). r₁ = √((10-5)(10-8)(10-7) / 10) = √3 = 1,732051, r₂ = √((15-7)(15-10)(15-13) / 15) = √(80/15) = √(16/3) = 4 / √3 = 2,309401. Находим тангенс половинного углa С через косинус по формуле: tg α/2 =√(1-cos α) / (1+cos α). tg A/2 = tg 60/2 = tg 30 = 1/√3 tg C/2 = √((1-(11/13)) / (1+(11/13))) = √(2/24) = √(1/12) = 1 / 2√3. Находим отрезки АК и СL: AK = r₁ / tg A/2 = √3 / (1/√3) = 3. CL = r₂ / tg C/2 = 4*2√3 / √3 = 8 Отсюда искомый отрезок KL = 15-3-8 = 4. Из условия задачи вытекает только один вариант: если соотношение отрезков AD и DC считать слева направо. Второй вариант может быть при расположении точки D со стороны ула С.
Tg C = √3 / √6 = √(3/6) = 1 / √2. Через этот тангенс находим синус С = tg C / (+-√(1+tg²C)) = 1 /(√2*(1+(1/2))) = 1 / √3. Высота в прямоугольном треугольнике АВС равна ha = √6*sin C = = √6*(1 / √3) = √2. Расстояние от точки S до ВС - это гипотенуза треугольника, где один катет SA = 2 см, а второй - высота ha = √2. Отсюда искомое расстояние от точки S до ВС = √(2²+(√2)²) = √6 = = 2,44949 см. Высоту ha можно было найти по другой формуле: ha =2√(p(p-a)(p-b)(p-c)) / a. Для этого надо найти диагональ А = √((√3)²+(√6)²) = √9 = 3 см. А рисунок к этой задаче очень прост - сначала вычертить план треугольника и высоту к гипотенузе, а затем вертикальную плоскость с отрезком SA и высотой ha.
cos A = (b²+c²-a²) / (2bc) = (15²+8²-13²) / (2*15*8) = 120 / 240 = 1 / 2.
A = arc cos (1/2) = 60°.
cos C = (a²+b²-c²) / (2ab) = (13²+15²-8²) / (2*13*15) = 330 / 390 = 11 / 13
C = arc cos (11/13) = 32,20423°.
Теперь определяем длину отрезка ВД = √(5²+8²-2*5*8*(1/2)) = √(25+64-40) = 7.
В треугольниках ABD и CBD находим радиусы вписанных окружностей по формуле: r = √((p-a)(p-b)(p-c) / p).
r₁ = √((10-5)(10-8)(10-7) / 10) = √3 = 1,732051,
r₂ = √((15-7)(15-10)(15-13) / 15) = √(80/15) = √(16/3) = 4 / √3 = 2,309401.
Находим тангенс половинного углa С через косинус по формуле:
tg α/2 =√(1-cos α) / (1+cos α).
tg A/2 = tg 60/2 = tg 30 = 1/√3
tg C/2 = √((1-(11/13)) / (1+(11/13))) = √(2/24) = √(1/12) = 1 / 2√3.
Находим отрезки АК и СL:
AK = r₁ / tg A/2 = √3 / (1/√3) = 3.
CL = r₂ / tg C/2 = 4*2√3 / √3 = 8
Отсюда искомый отрезок KL = 15-3-8 = 4.
Из условия задачи вытекает только один вариант: если соотношение отрезков AD и DC считать слева направо.
Второй вариант может быть при расположении точки D со стороны ула С.
Через этот тангенс находим синус С = tg C / (+-√(1+tg²C)) =
1 /(√2*(1+(1/2))) = 1 / √3.
Высота в прямоугольном треугольнике АВС равна ha = √6*sin C =
= √6*(1 / √3) = √2.
Расстояние от точки S до ВС - это гипотенуза треугольника, где один катет SA = 2 см, а второй - высота ha = √2.
Отсюда искомое расстояние от точки S до ВС = √(2²+(√2)²) = √6 =
= 2,44949 см.
Высоту ha можно было найти по другой формуле:
ha =2√(p(p-a)(p-b)(p-c)) / a.
Для этого надо найти диагональ А = √((√3)²+(√6)²) = √9 = 3 см.
А рисунок к этой задаче очень прост - сначала вычертить план треугольника и высоту к гипотенузе, а затем вертикальную плоскость с отрезком SA и высотой ha.