Объяснение: 1 будет правильно по свойству вертикальных углов.
2 будет неверно из-за того, что смежные углы это два угла у которых 1 сторона общая а две другие являются продолжениями одна другой, а на предоставленном примере несказанно то что у них одна сторона общая судя по этому мы можем сказать то что это два любых различных угла.
3 будет неверно из-за того, что вертикальные углы это два угла у которых стороны одного угла являются продолжением сторон другого, а у нас не сказано то что стороны этих углов являются продолжением друг друга, из чего мы можем сделать вывод то, что это неверно.
Рисунок к вопросу не был приложен, поэтому возможно пирамида выглядит по другому, но построения нужной точки остаётся правильным.
B,O∈(ABC); BO⊂(ABC); AC⊂(ABC). Пусть BO∩AC=P. *по рисунку O - лежит в треугольнике, поэтому прямые BO и AC не могут быть параллельными, а раз они лежат в одной плоскости, то они пересекаются.
O∈BP⊂(SBP) ⇒ O∈(SBP). O∈l; l║SB; SB⊂(SBP) из всего этого следует, что l⊂(SBP). SP⊂(SBP)
Ну и желательно оговорить почему прямые l и SP не параллельны. l⊥(ABC), BP⊂(ABC) ⇒ l⊥BP. Если l║SP, то SP⊥BP поскольку P∈BP. Получается, что из вершины S проведены две не совпадающие высоты к одной плоскости (ABC), что не возможно. Как итог l не параллельно SP, а раз они лежат в одной плоскости (SBP), то они пересекаются.
Пусть l∩SP=T. T - искомая точка, поскольку T∈SP⊂(SAC)
ответ: l∩(SAC)=T.
Это было доказательство того, что построение верное.
ответ: неверные: 2, 3.
Объяснение: 1 будет правильно по свойству вертикальных углов.
2 будет неверно из-за того, что смежные углы это два угла у которых 1 сторона общая а две другие являются продолжениями одна другой, а на предоставленном примере несказанно то что у них одна сторона общая судя по этому мы можем сказать то что это два любых различных угла.
3 будет неверно из-за того, что вертикальные углы это два угла у которых стороны одного угла являются продолжением сторон другого, а у нас не сказано то что стороны этих углов являются продолжением друг друга, из чего мы можем сделать вывод то, что это неверно.
4 будет верно.
Рисунок к вопросу не был приложен, поэтому возможно пирамида выглядит по другому, но построения нужной точки остаётся правильным.
B,O∈(ABC); BO⊂(ABC); AC⊂(ABC). Пусть BO∩AC=P. *по рисунку O - лежит в треугольнике, поэтому прямые BO и AC не могут быть параллельными, а раз они лежат в одной плоскости, то они пересекаются.
O∈BP⊂(SBP) ⇒ O∈(SBP). O∈l; l║SB; SB⊂(SBP) из всего этого следует, что l⊂(SBP). SP⊂(SBP)
Ну и желательно оговорить почему прямые l и SP не параллельны. l⊥(ABC), BP⊂(ABC) ⇒ l⊥BP. Если l║SP, то SP⊥BP поскольку P∈BP. Получается, что из вершины S проведены две не совпадающие высоты к одной плоскости (ABC), что не возможно. Как итог l не параллельно SP, а раз они лежат в одной плоскости (SBP), то они пересекаются.
Пусть l∩SP=T. T - искомая точка, поскольку T∈SP⊂(SAC)
ответ: l∩(SAC)=T.
Это было доказательство того, что построение верное.