Подобные задачи ("стороны или углы пропорциональны числам") решаются следующим образом: 1) Вводится переменная х, обозначающая одну часть (пишется "пусть х -одна часть") 2) Стороны треугольника записываются через эту переменную: 3х, 4х, 6х ( то есть в каждой стороне треугольника содержится столько-то этих частей) 3) Стороны складываются, образуя периметр. Получаем уравнение: 3х + 4х+ 6х = 39 13Х = 39 х =3 4) Нам нужна меньшая сторона, то есть та сторона, которая содержит меньше всего таких частей. Она равна 3х =3*3 =9
Через середины сторон равностороннего треугольника можно провсти только одну окружность - вписанную в этот треугольник. Для того чтобы найти ее радиус надо решить прямоугольный треугольник малым катетом которого является искомый радиус OD, большим катетом AD является половина стороны равностороннего треугольника 8√3/2 = 4√3, гипотенузой - отрезок AO от вершины равностороннего треугольника A до центра вписанной окружности, с углом DAO равным половине 60 градусов то есть 30 градусов. Вот и считаем: AO = AD/cos(30) = 4√3/(√3/2) = 8, OD = AO*sin(30) = 8/2 = 4 Радиус искомой окружности равен 4
1) Вводится переменная х, обозначающая одну часть (пишется "пусть х -одна часть")
2) Стороны треугольника записываются через эту переменную: 3х, 4х, 6х ( то есть в каждой стороне треугольника содержится столько-то этих частей)
3) Стороны складываются, образуя периметр. Получаем уравнение:
3х + 4х+ 6х = 39
13Х = 39
х =3
4) Нам нужна меньшая сторона, то есть та сторона, которая содержит меньше всего таких частей. Она равна 3х =3*3 =9
Вот и считаем:
AO = AD/cos(30) = 4√3/(√3/2) = 8,
OD = AO*sin(30) = 8/2 = 4
Радиус искомой окружности равен 4