Т.к треугольник равнобедренный то биссектриса также является медианой, а значит все стороны равны 6*2=12 см. следовательно в треуг-ке АDC сторона AC равна 12 см, а сторона DC по условию 6 см. отсюда можно найти расстояние от вершины А до стороны (прямой) ВС, следовательно нужно найти биссектрису AD по теореме Пифагора: AC в кв=AD в кв + DC в кв. выражаем из этого AD: AD=квадратный корень из разности квадратов сторон AC и DC. AD= корень из 12 в кв - 6 в кв = корень из 144 - 36= корень из 108= 2 корня из 27.
Укажите номера верных утверждений : 1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой. Верно. Аксиома планиметрии 9: через точку, не лежащую на данной прямой можно провести на плоскости не более одной прямой, параллельной данной. 2) Треугольник со сторонами 1,2,4 существует Неверно. Длина каждой стороны треугольника не может быть больше или равна сумме двух других. 4>1+2 (неравенство треугольника) 3) Если в ромбе один из углов равен 90 гр, то такой ромб - квадрат
Верно. Сумма углов четырехугольника 360°. Ромб - параллелограмм, все стороны которого равны. Противоположные углы ромба равны. Если один угол равен 90°, противоположный равен 90°. Два других равны 90°. Квадрат - параллелограмм, все стороны которого равны (ромб) и все углы прямые (прямоугольник).
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
Верно. Аксиома планиметрии 9: через точку, не лежащую на данной прямой можно провести на плоскости не более одной прямой, параллельной данной.
2) Треугольник со сторонами 1,2,4 существует
Неверно. Длина каждой стороны треугольника не может быть больше или равна сумме двух других. 4>1+2 (неравенство треугольника)
3) Если в ромбе один из углов равен 90 гр, то такой ромб - квадрат
Верно. Сумма углов четырехугольника 360°. Ромб - параллелограмм, все стороны которого равны. Противоположные углы ромба равны. Если один угол равен 90°, противоположный равен 90°. Два других равны 90°. Квадрат - параллелограмм, все стороны которого равны (ромб) и все углы прямые (прямоугольник).