Биссектриса MK угла CMD делит угол на две равные части. Т.к. сумма смежных углов AMD и CMD равна 180*, то 180*-48*=132*. Угол CMD равен 132 градуса. Угол KMC равен 132*:2=66*. Угол AME(точка добавилась с другой стороны биссектрисы, чтобы было, как назвать угол) и угол KMC вертикальные, а значит угол AME=66*. Т.к. MK||AD, накрест лежащие углы DME и MDF(Точка F образовалась на продолжении стороны AD со стороны точки D) равны, вследствие пересечения двух параллельных прямых секущей MD. Угол DME=MDF= 48*+66*=114*. Угол MDF смежный с углом D, а значит угол D=180*-114*=66*. А ещё угол DME и угол D соответственные а значит они равны. DME=D=66*
Дан треугольник АВС, высота ВД=8 см, АД=15 см, ДС=6 см.
Сторона АС = 15 + 6 = 21 см.
Отсюда находим площадь треугольника.
S = (1/2)ah = (1/2)*21*8 = 84 см².
Теперь используем формулы радиуса.
Радиус r вписанной окружности равен отношению площади треугольника к его полупериметру.
Находим неизвестные стороны.
АВ = √(15² + 8²) = √(225 + 64) = √289 = 17 см.
ВС = √(6² + 8²) = √(36 + 64) = √100 = 10 см.
Полупериметр р = (17 + 10 + 21)/2 = 48/2 = 24 см.
Находим: r = S/p = 84/24 = 3,5 см.
Радиус R описанной окружности равен:
R = abc/(4S) = 17*10*21/(4*84) = 10,625 см.