В треугольнике ABC, AC = CB = 8, угол ACB = 120 градусов. Точка M удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника ABC.
Найти угол между MA и плоскостью треугольника ABC
Точка M находится на равном расстоянии от вершин треугольника ABC, следовательно, наклонные МА, МС и МВ равны, их проекции также равны, а М проецируется в центр В Описанное вокруг Δ АВС окружности.
ОА = ОВ = ОС = R
Углы при А и В равны, как углы при основании равнобедренного треугольника.
Пусть параллельные прямые a и b пересечены секущей MN. Докажем, что накрест лежащие углы, например, 1 и 2 равны. Допустим, что углы 1 и 2 не равны. Отложим от луча MN угол PMN, равный углу 2, так, чтобы угол PMN и угол 2 были накрест лежащими углами при пересечении прямых МР и b секущей MN. По построению эти накрест лежащие углы равны, поэтому МР||b. Мы получили, что через точку М проходят две прямые (прямые a и МР) , параллельные прямой b. Но это противоречит аксиоме параллельных прямых. Значит, наше допущение неверно и угол 1 = углу 2.
В треугольнике ABC, AC = CB = 8, угол ACB = 120 градусов. Точка M удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника ABC.
Найти угол между MA и плоскостью треугольника ABC
Точка M находится на равном расстоянии от вершин треугольника ABC, следовательно, наклонные МА, МС и МВ равны, их проекции также равны, а М проецируется в центр В Описанное вокруг Δ АВС окружности.
ОА = ОВ = ОС = R
Углы при А и В равны, как углы при основании равнобедренного треугольника.
∠А = ∠В = (180º-120º): 2 = 30º
по т.синусов
R = (AC: sin 30º): 2 = (8: 0,5): 2 = 8 см
Δ МOA - прямоугольный, МО = 12, ОВ = 8, и tg ∠MAO = 12/8 = 1,5
∠MAO = ≈56º20 "