Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм. Продлим медиану за точку пересечения с гипотенузой и отложим отрезок, равный медиане. Тогда получившийся четырехугольник - параллелограмм (смотри определение). А параллелограмм, у которого углы прямые - прямоугольник. В прямоугольном треугольнике против угла 30° лежит катет, равный половине гипотенузы. Значит один из катетов равен 7. А второй по Пифагору равен √(196-49) = √147см
BC = 19; KH = 10; Рассмотрим треугольники AKB и BKM (на рисунке одинаковыми цветами отмечены равные углы). Поскольку у них равны два угла, то у них равны и третьи. Т.е ∠BKA = ∠BKM = 180°/2 = 90°. Значит биссектрисы пересекаются под прямым углом. Δ ABN - равнобедренный. Значит BK = KN, в силу того, что AK - медиана. Также Δ ABM равнобедренный. Значит AK = KM; Δ AKN = Δ BKM по двум сторонам и углу между ними. В равных треугольниках равны соответствующие элементы, значит высоты TK и KE равны. Треугольники HBK и TBK равны по углу и общей гипотенузе. Следовательно HK = KT = KE; Теперь найдем площадь S. S = BC*(TK+KE) = 2*BC*HK = 2*19*10 = 380
Продлим медиану за точку пересечения с гипотенузой и отложим отрезок, равный медиане. Тогда получившийся четырехугольник - параллелограмм (смотри определение). А параллелограмм, у которого углы прямые - прямоугольник. В прямоугольном треугольнике против угла 30° лежит катет, равный половине гипотенузы. Значит один из катетов равен 7. А второй по Пифагору равен √(196-49) = √147см