1.Диагонали ромба равны 14 и 48 см. Найдите сторону ромба.
Пусть сторона ромба а Сумма квадратов диагоналей параллелограмма равна сумме квадратоввсех его сторон. Стороны в ромбе равны. 4а²=14²+48² 4а²=196+2304=2500 а²=625 а=25
2.В треугольнике два угла равны 45° и 90°, а большая стороны 20 см. Найдите другие стороны треугольника.
Сумма углов треугольника =180° Второй острый его угол =45°, следовательно, треугольник равнобедренный прямоугольный.
Большая сторона в прямоугольном треугольнике - его гипотенуза.
Дано: KL=27 KN=24 MN=8 Найти: Р(KMN)=? Решение Пусть LN=x, а KM=y (рисунок во вложении). KN является биссектрисой в ΔKLM. Используя свойство биссектрисы составим пропорцию: KL/LN=KM/MN. По условиям задачи KL=27, MN=8, LN=x и KM=y. Подставим значения: 27/х=у/8 Выразим х*у: х*у=27*8=216 (1) Найдём длину биссектрисы KN: KN²=KL*KM-LN*MN По условиям задачи KL=27, MN=8, LN=x и KM=y 24²=27у-8х 576=27у-8х (2)
Решим систему уравнений: {х*у=216 {576=27у-8х Выразим значение х из первого уравнения: х=216/у Подставим его во второе уравнение (метод подстановки): 576=27у-8х 576=27у-8*216/у 576=27у-1728/у (умножим все члены на у, чтобы избавиться от знаменателя) 576*у=27у²-1728 27у²-1728-576у=0 27у²—576у-1728=0 D=b²-4ac=(-576)²-4*27*(-1728)=331776+186624=518400 (√D= 720) у₁=(-b+√D)/2a=(-(-576)+720)/2*27=1296/54=24 у₂=(-b-√D)/2a=(-(-576)-720)/2*27=-144/27 – не подходит, т.к. х < 0
у=KM=24, 24х=216 х=LN=9
Р (ΔKMN)=KN+MN+KM=24+8+24=56 ответ: периметр треугольника KMN равен 56.
1.Диагонали ромба равны 14 и 48 см. Найдите сторону ромба.
Пусть сторона ромба а
Сумма квадратов диагоналей параллелограмма равна сумме квадратоввсех его сторон. Стороны в ромбе равны.
4а²=14²+48²
4а²=196+2304=2500
а²=625
а=25
2.В треугольнике два угла равны 45° и 90°, а большая стороны 20 см. Найдите другие стороны треугольника.
Сумма углов треугольника =180°
Второй острый его угол =45°, следовательно, треугольник равнобедренный прямоугольный.
Большая сторона в прямоугольном треугольнике - его гипотенуза.
Квадрат гипотенузы равен сумме квадратов катетов:
с²=а²+ b²
а=b
с²=2а²
20²=2а²
а²=400:2=200
а=√200=10√2
ответ: а=b=10√2
KL=27
KN=24
MN=8
Найти: Р(KMN)=?
Решение
Пусть LN=x, а KM=y (рисунок во вложении). KN является биссектрисой в ΔKLM. Используя свойство биссектрисы составим пропорцию: KL/LN=KM/MN.
По условиям задачи KL=27, MN=8, LN=x и KM=y. Подставим значения: 27/х=у/8
Выразим х*у:
х*у=27*8=216 (1)
Найдём длину биссектрисы KN:
KN²=KL*KM-LN*MN
По условиям задачи KL=27, MN=8, LN=x и KM=y
24²=27у-8х
576=27у-8х (2)
Решим систему уравнений:
{х*у=216
{576=27у-8х
Выразим значение х из первого уравнения: х=216/у
Подставим его во второе уравнение (метод подстановки):
576=27у-8х
576=27у-8*216/у
576=27у-1728/у (умножим все члены на у, чтобы избавиться от знаменателя)
576*у=27у²-1728
27у²-1728-576у=0
27у²—576у-1728=0
D=b²-4ac=(-576)²-4*27*(-1728)=331776+186624=518400 (√D= 720) у₁=(-b+√D)/2a=(-(-576)+720)/2*27=1296/54=24
у₂=(-b-√D)/2a=(-(-576)-720)/2*27=-144/27 – не подходит, т.к. х < 0
у=KM=24,
24х=216
х=LN=9
Р (ΔKMN)=KN+MN+KM=24+8+24=56
ответ: периметр треугольника KMN равен 56.