Около трапеции описана окружность - значит, трапеция вписанная и равнобедренная, т.к. в окружность можно вписать только равнобедренную трапецию. Сделаем рисунок, обозначим вершины углов трапеции привычными АВСД Через центр окружности проведем перпендикулярно к основаниям трапеции диаметр. Его отрезок МК, заключенный между основаниями трапеции, является ее высотой и делит основания пополам. ( Основания - хорды, перпендикуляр из центра окружности к хорде делит ее пополам). Соединим центр О с вершинами С и Д. ОС=ОД=R Обозначим ОК=х, тогда ОМ =27-х По т. Пифагора R²=МС²+ОМ² R²=КД²+ОК² Приравняем значения радиуса. МС²+ОМ²=КД²+ОК² 225+(27-х)²=576+х² 54х=378 х=7 ОК=7 R²=КД²+ОК² R²=24²+7² R²=625 R=25
Свойство острых углов прямоугольного треугольника: сумма острых углов прямоугольного треугольника равна 90°.
Свойство катета, лежащего против угла в 30°: катет, лежащй против угла в 30°, равен половине гипотенузы.
Против меньшего угла лежит меньшая сторона, а против меньшей стороны лежит меньший угол.
Поэтому:
1. Втрой острый угол равен: 90° - 60° = 30°.
2. Значит, против угла в 30° лежит меньший катет.
Обозначим меньший катет х см, тогда гипотенуза будет равна (2х) см. Т.к. по условию задачи их сумма равна 9 см, то состаим и решим уравнение:
х + 2х = 9,
3х = 9,
х = 9 : 3,
х = 3.
Значит, меньший катет прямоугольного треугольника равен 3 см.
ответ: 1. 30°. 2. 3 см.
Сделаем рисунок, обозначим вершины углов трапеции привычными АВСД Через центр окружности проведем перпендикулярно к основаниям трапеции диаметр.
Его отрезок МК, заключенный между основаниями трапеции, является ее высотой и делит основания пополам. ( Основания - хорды, перпендикуляр из центра окружности к хорде делит ее пополам).
Соединим центр О с вершинами С и Д.
ОС=ОД=R
Обозначим ОК=х, тогда ОМ =27-х
По т. Пифагора
R²=МС²+ОМ²
R²=КД²+ОК² Приравняем значения радиуса.
МС²+ОМ²=КД²+ОК²
225+(27-х)²=576+х²
54х=378
х=7
ОК=7
R²=КД²+ОК²
R²=24²+7²
R²=625
R=25