Знайти площу основи і площу бічної поверхні правильної n-кутної піраміди ,якщо n=6,висота піраміди дорівнюе H ,а бічна грань нахилена до основи під кутом a
Маємо парал. АВСД АВ=8 см , ВС=16 см , ВК(висота до сторониАД) =12 см, знайти іншу висоту до сторони СД Можна через квадратне рівняння , а можна швидче, якщо порівняти подібні трикутники АВЕ і ВКС ВЕ/АВ=ВК/ВС ВК(друга висота)=12*16/8=24 см.
2)S=48²=2304 см²
3) Р=48 знайти площу нехай Х буде стороною квадрата , 4Х=48 , Х=12 S=12²=144 см²
4) позначимо сторону прямокутника через Х, друга буде 5Х , складемо периметр:2х+10х=44 12х=44 х=3,7 , друга сторона =5*3,7=18,5 S=18,5*3,7=68.5 см²
1) Друга висота дорівнює 24 см
Объяснение:
Маємо парал. АВСД АВ=8 см , ВС=16 см , ВК(висота до сторониАД) =12 см, знайти іншу висоту до сторони СД Можна через квадратне рівняння , а можна швидче, якщо порівняти подібні трикутники АВЕ і ВКС ВЕ/АВ=ВК/ВС ВК(друга висота)=12*16/8=24 см.
2)S=48²=2304 см²
3) Р=48 знайти площу нехай Х буде стороною квадрата , 4Х=48 , Х=12 S=12²=144 см²
4) позначимо сторону прямокутника через Х, друга буде 5Х , складемо периметр:2х+10х=44 12х=44 х=3,7 , друга сторона =5*3,7=18,5 S=18,5*3,7=68.5 см²
5) S =1/2*27*22=297 см²
6)S= 1/2*13*14=91см²
а - сторона ромба
периметр
Р = 4 а = 52
а = 52/4 = 13 см
Диагонали ромбы d1 и d2 перпендикулярны = >
d1 / d2 = 5 / 12 или d1 = 5d2 / 12
Cтороны прямоугольных треугольников, образуемых диагоналями, будут ^
d1/2, d2/2 - катеты
а - - гипотенуза (она же сторона ромба)
По теореме пифагора
(d1/2) ^2 + (d2/2) ^2 = a^2
d1^2 + d2^2 = 4a^2
(5d2 / 12) ^2 + d2^2 = 13^2
25d2^2 + 144d2^2 = 13^2 * 12^2
169d2^2 = (13^2*12^2
13^2 d2^2 = 13^2 * 12^2
d2^2 = 12^2
d2 = 12 см - вторая диагональ
d1 = 5d2 / 12 = 5 * 12 / 12 = 5 - первая диагональ
ответ: диагонали d1=5 cм, d2 = 12 см