Знайти площу паралелограму, одна сторона якого дорівнює 5 см, а висота, проведена з вершини тупого кута ділить іншу сторону на відрізки завдовжки 4 см і 6 см
Из прямоугольного треугольника ABD AD^2=AB^2+BD^2=9+16=25 AD=5 Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12 AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1 Пусть BE высота в треугольнике ABD Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах. Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE Чтобы найти высоту BE выразим площадь треугольника ABD двумя площадь ABD = AB*BD/2 = AD*BE/2, отсюда BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна 2*площадь основания+площадь боковой поверхности площадь боковой поверхности = периметр основания умножить на высоту периметр основания = AB+BC+CD+AD=3+5+3+5=16 тогда площадь боковой поверхности 16*2,4=38,4 площадь полной поверхности 2*12+38,4=24+38,4=62,4
Т.к. угол ABE = углу BAE, то треугольник ABE - равнобедренный => сторона AE = стороне BE = 4.
Найдём основание AD :
Проведём высоту CH => HD = AE = 4 и EH = BC = 5, т.к. трапеция равнобедренная. Находим AD : 4+5+4 = 13 => площадь ABCD = 1/2×4×(13+5) = 1/2×4×18 = 18×2 = 36
ответ : 36
8. Дано:
ABCD - трапеция
AD = 15
AB = 10
BC = 4
угол ABM = 60°
S ABCD - ?
S = 1/2h(a+b)
Найдём угол BAM : 180-(60+90) = 180-150 = 30° =>
т.к. против угла в 30° лежит катет равный половине гипотенузы, то BE = 10÷2 = 5 =>
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
7. Дано:
ABCD - р/б трапеция
AB = CD
угол ABE = 45°
AE = 4
BC = 5
S ABCD - ?
S = 1/2h(a+b)
Найдём угол BAE : 190-(90+45) = 180-135 = 45°
Т.к. угол ABE = углу BAE, то треугольник ABE - равнобедренный => сторона AE = стороне BE = 4.
Найдём основание AD :
Проведём высоту CH => HD = AE = 4 и EH = BC = 5, т.к. трапеция равнобедренная. Находим AD : 4+5+4 = 13 => площадь ABCD = 1/2×4×(13+5) = 1/2×4×18 = 18×2 = 36
ответ : 36
8. Дано:
ABCD - трапеция
AD = 15
AB = 10
BC = 4
угол ABM = 60°
S ABCD - ?
S = 1/2h(a+b)
Найдём угол BAM : 180-(60+90) = 180-150 = 30° =>
т.к. против угла в 30° лежит катет равный половине гипотенузы, то BE = 10÷2 = 5 =>
S ABCD = 1/2×5×(15+4) = 47,5
ответ: 47,5