Ну, тоды поставим точку в середине стороны АВ, и назовём её незатейливой буквой Е. Построим отрезок ЕС. А также, если ещё не провели, то проведём отрезок AF. И ещё строим отрезок EF. И видим, что тремя отрезками наш квадрат разбился на четыре одинаковых треугольника, а они все четыре одинаковые, потому что каждый имеет прямой угол, катет 2 см, и катет 1 см. Итак, осталось только понять,что площадь четырёхугольника ABCF составляет три треугольника. Видишь на чертеже? Площадь квадрата мы умеем находить, это будет 2*2 = 4 см2. А значит площадь четырёхугольника будет 3/4 от 4 = 3 см2. Андерстенд?
Думаю так выберешь одно из них: 1)Через вершину С провести прямую параллельно диагонали. Получится треугольник АСЕ, в котором АЕ = 14+1=15м, АС = 13м, СЕ = 14м. Найти площадь этого треугольника по формуле Герона. Потом найти высоту этого треугольника, разделив две его площади на АЕ, то есть на 15. Высота эта будет и высотой трапеции, площадь трапеции можно найти по формуле: S=1/2(a+b)h 2)Разность осн-ний=13см. Высоты отсекают от большего осн-ния отрезки, один из кот. =х, другой=(13-х) Выразив высоту трапеции через диагональ и часть большего осн-ния, получаем: 169-x^2=196-(13-x)^2 Найти "х", вычислить высоту (h) Найти площадь по ф-ле: S=h*(a+b)/2=?
1)Через вершину С провести прямую параллельно диагонали.
Получится треугольник АСЕ,
в котором АЕ = 14+1=15м, АС = 13м, СЕ = 14м.
Найти площадь этого треугольника по формуле Герона.
Потом найти высоту этого треугольника, разделив две его площади на АЕ, то есть на 15.
Высота эта будет и высотой трапеции, площадь трапеции можно найти по формуле: S=1/2(a+b)h
2)Разность осн-ний=13см.
Высоты отсекают от большего осн-ния отрезки, один из кот. =х, другой=(13-х)
Выразив высоту трапеции через диагональ и часть большего осн-ния, получаем:
169-x^2=196-(13-x)^2
Найти "х", вычислить высоту (h)
Найти площадь по ф-ле: S=h*(a+b)/2=?