Объяснение: В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон.
Ромб - параллелограмм, все стороны которого равны. Примем одну его диагональ равной х, тогда вторая - х+10.
4•25²=х²+(х+10)² ⇒ 2х²+20х-2400=0. Сократив все члены уравнения на 2, получим приведенное квадратное уравнение х²+10х-1200=0.
D=b²-4ac=10²-4·1·-1200=4900; дискриминант положительный. ⇒ уравнение имеет два корня. х=(-b±√D):2 ⇒ х₁=30, х₂=-40 ( не подходит).
d₁=30 см, d₂=30+10=40 см
Площадь ромба равна половине произведения диагоналей.
S=0.5•d₁•d₂=30•40:2=600 см²
Диагонали в этой задаче можно найти по т.Виета: .Сумма корней приведенного квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение - свободному члену. ⇒ х₁+х₂=-10; х₁•х₂=1200 х₁=30, х₂=-40.
тебе нужно просто расставить буквы к данной функции.
1. с (применяется правило синуса. противоположный катет к гипотенузе)
2. а (правило косинуса. прилежащий катет к гипотенузе)
3. а (правило синуса)
4. с (правило косинуса)
5. не возможно найти (так как правило противолежащий катет к прилежащему катету, а у нас отношения такого не дано.)
6. в (правило котангенса. прилежащий катет к противолежащему катету )
7.в (правило тангенса. противолежащий катет к прилежащему катету)
8.не возможно найти (так как по правилу прилежащий катет к противолежащему катету, а нам отношение не дано)
вот и все. не забудь построить прямоугольный треугольник и правильно указать буквы.
ответ: 600 см²
Объяснение: В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон.
Ромб - параллелограмм, все стороны которого равны. Примем одну его диагональ равной х, тогда вторая - х+10.
4•25²=х²+(х+10)² ⇒ 2х²+20х-2400=0. Сократив все члены уравнения на 2, получим приведенное квадратное уравнение х²+10х-1200=0.
D=b²-4ac=10²-4·1·-1200=4900; дискриминант положительный. ⇒ уравнение имеет два корня. х=(-b±√D):2 ⇒ х₁=30, х₂=-40 ( не подходит).
d₁=30 см, d₂=30+10=40 см
Площадь ромба равна половине произведения диагоналей.
S=0.5•d₁•d₂=30•40:2=600 см²
Диагонали в этой задаче можно найти по т.Виета: .Сумма корней приведенного квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение - свободному члену. ⇒ х₁+х₂=-10; х₁•х₂=1200 х₁=30, х₂=-40.