если рассмотреть отрезки, касательных до сторон угла, то точки касания разобьют на, например, х и у, гипотенузу, тогда точки касания катетов соответственно разобьют катеты на отрезки (х+r) и (y+r), и, следовательно, периметр будет равен х+r+у+r+х+у, здесь а=x+r, в=у+r; с=х+у. но тогда периметр равен 2х+2r+2у=2(х+у)+2r=2(с+r)
Если теперь приравнять полученные преиметры. т.е. 2с+2r=а+в+с,
разделить левую и правую части на 2, то получим с+r=(а+в+c)/2, и отнять с от левои и правой части, то получимr=(а+в+с)/2-с,
1) Из рисунка следует, что внутренние стороны треугольников основания являются средними линиями большого треугольника, так как соединяют середины сторон, и, следовательно, равны:
1/2 стороны, обозначенной 2 штрихами (у серого треугольника);
1/2 стороны, обозначенной 1 штрихом (у белого треугольника).
Таким образом, 3 стороны белого треугольника равны 3 сторонам серого треугольника, - значит, эти треугольники равны.
2) Фигура, обозначенная S, является параллелограммом, так как его противоположные стороны равны (это вытекает из выше доказанного равенства треугольников) и параллельны (средние линии параллельны основаниям). Следовательно, S в 2 раза больше площади серого треугольника:
если рассмотреть отрезки, касательных до сторон угла, то точки касания разобьют на, например, х и у, гипотенузу, тогда точки касания катетов соответственно разобьют катеты на отрезки (х+r) и (y+r), и, следовательно, периметр будет равен х+r+у+r+х+у, здесь а=x+r, в=у+r; с=х+у. но тогда периметр равен 2х+2r+2у=2(х+у)+2r=2(с+r)
Если теперь приравнять полученные преиметры. т.е. 2с+2r=а+в+с,
разделить левую и правую части на 2, то получим с+r=(а+в+c)/2, и отнять с от левои и правой части, то получимr=(а+в+с)/2-с,
r=(а+в-с)/2
26
Объяснение:
1) Из рисунка следует, что внутренние стороны треугольников основания являются средними линиями большого треугольника, так как соединяют середины сторон, и, следовательно, равны:
1/2 стороны, обозначенной 2 штрихами (у серого треугольника);
1/2 стороны, обозначенной 1 штрихом (у белого треугольника).
Таким образом, 3 стороны белого треугольника равны 3 сторонам серого треугольника, - значит, эти треугольники равны.
2) Фигура, обозначенная S, является параллелограммом, так как его противоположные стороны равны (это вытекает из выше доказанного равенства треугольников) и параллельны (средние линии параллельны основаниям). Следовательно, S в 2 раза больше площади серого треугольника:
S = 13 · 2 = 26