Гипотенуза в квадрате равна сумме квадратов катетов, т.е. 25=25x, x=1. А отношение было 3x:4x, сл-но стороны 3 и 4. Если это прямоугольный треугольник, то высота делит гипотенузу на некоторые отрезки. Высота это линия из прямого угла пересекающая гипотинузу под прямым углом. Рисуем ее. Получается два смежных прямоугольных треугольника: первый - гипотенуза 4 см, один катет наша высота- назовем ее Х, второй катет - часть гипотенузы нашего самого первого треугольника, назовем его У; и второй треугольник - его гипотенуза 3 см, один катет опять наша высота Х, второй - оставшаяся часть гипотенузы исходного треугольника она будет 5-y
Составляем квадратные уравнения: x^2+y^2=9 x^2+(5-y)^2=16; x^2+25-10y+y^2=3; из первого равенства x^2+y^2=9 делаем подстановку, получаем: 9+25-10y=16; y=1,8
Подставляем в первое x^2+y^2=9 x^2= 9 - 1,8^2 x^2= 5.76 x=2.4
1) средняя линия равна половине параллельной стороны, поэтому соотношение сторон также 2:2:4
45/(2+2+4)=5,625
5,625*2=11,25
5,625*4=22,5
2) АВ²=АС²+ВС²=5²+(5√3)²=100
AB=10 см
sinB=AC/AB=0.5
угол В=30°
3)Отрезок EF отнюдь не является средней линией треугольника! Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1. То есть отрезок ВО в 2 раза больше отрезка OD.
Рассмотрим два треугольника: основной АВС и верхний EBF. Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка - постоянная величина.. Но это же относится ик другим отрезкам, не только к сторонам. В частности, к медианам.
Легко увидеть, чему равно отношение медиан ВО/BD = 2/3. Значит, и отношение оснований такое же:
EF / 15 = 2/3
Отсюда EF = 10 см.
4)Полученные треугольники AKD и ВКС подобны, поскольку их углы равны друг другу (KAD=КВС, KCB=KDA, BKC=AKD). Это значит, что соотношения их сторон равны. Раз АВ-АК, значит что АК =2*ВK. Отсюда AD = 2*BC. Следовательно BC=AD/2=6 см.
А отношение было 3x:4x, сл-но стороны 3 и 4.
Если это прямоугольный треугольник, то высота делит гипотенузу на некоторые отрезки.
Высота это линия из прямого угла пересекающая гипотинузу под прямым углом. Рисуем ее. Получается два смежных прямоугольных треугольника: первый - гипотенуза 4 см, один катет наша высота- назовем ее Х, второй катет - часть гипотенузы нашего самого первого треугольника, назовем его У; и второй треугольник - его гипотенуза 3 см, один катет опять наша высота Х, второй - оставшаяся часть гипотенузы исходного треугольника она будет 5-y
Составляем квадратные уравнения:
x^2+y^2=9
x^2+(5-y)^2=16; x^2+25-10y+y^2=3; из первого равенства x^2+y^2=9 делаем подстановку, получаем: 9+25-10y=16; y=1,8
Подставляем в первое x^2+y^2=9
x^2= 9 - 1,8^2
x^2= 5.76
x=2.4
Сл-но высота равна 2,4 или 24\10=12\5
1) средняя линия равна половине параллельной стороны, поэтому соотношение сторон также 2:2:4
45/(2+2+4)=5,625
5,625*2=11,25
5,625*4=22,5
2) АВ²=АС²+ВС²=5²+(5√3)²=100
AB=10 см
sinB=AC/AB=0.5
угол В=30°
3)Отрезок EF отнюдь не является средней линией треугольника! Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1. То есть отрезок ВО в 2 раза больше отрезка OD.
Рассмотрим два треугольника: основной АВС и верхний EBF. Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка - постоянная величина.. Но это же относится ик другим отрезкам, не только к сторонам. В частности, к медианам.
Легко увидеть, чему равно отношение медиан ВО/BD = 2/3. Значит, и отношение оснований такое же:
EF / 15 = 2/3
Отсюда EF = 10 см.
4)Полученные треугольники AKD и ВКС подобны, поскольку их углы равны друг другу (KAD=КВС, KCB=KDA, BKC=AKD). Это значит, что соотношения их сторон равны. Раз АВ-АК, значит что АК =2*ВK. Отсюда AD = 2*BC. Следовательно BC=AD/2=6 см.
Сумма оснований трапеции = 12+6=18 CM