1) 1 случай: если внешний угол при основании, тогда смежный с ним 180-116=64, второй угол при основании тоже = 64, а угол при вершине=180-64-64=52 2 случай: если внешний угол при вершине, тогда смежный с ним=64, а сумма углов при основании=116. Тк углы при основании равнобедренного треугольника равны, то каждый будет равен 116:2=58. 2) 1 случай: аналогично. Углы при основании=180-100=80, угол при вершине=180-80-80=20 2 случай: угол при вершине=80. Сумма углов при основании=100. Каждый угол при основании =100:2=50
2 случай: если внешний угол при вершине, тогда смежный с ним=64, а сумма углов при основании=116. Тк углы при основании равнобедренного треугольника равны, то каждый будет равен 116:2=58.
2) 1 случай: аналогично. Углы при основании=180-100=80, угол при вершине=180-80-80=20
2 случай: угол при вершине=80. Сумма углов при основании=100. Каждый угол при основании =100:2=50
Теорема - это высказывание, истинность которого необходимо доказать.
В теореме можно выделить 3 части:
1) преамбула. В ней описываются множества, относительно которых задана теорема. Это области определения высказывания А и высказывания В.
2) условия теоремы. Это предложение А или то что дано в теореме.
3) заключение теоремы. Это предложение В или то что нужно доказать в теореме.
Различают 4 вида теорем:
1. Данная теорема. Например: вертикальные углы равны. Если углы вертикальные, то они равны.
2. Теорема обратная данной. Например: если углы равны, то они вертикальные (данная теорема - ложна).
3. Теорема противоположная данной - Если углы не вертикальные, то они не равны (данная теорема ложна).
4. Теорема противоположная обратной - Если углы не равны, то они не вертикальные. (Истинная теорема)