В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Qeasdzxcrfv
Qeasdzxcrfv
29.07.2022 06:17 •  Геометрия

Знайти шостий член ї прогресії, перший член якої b1=3/7, а знаменник q= -1

Показать ответ
Ответ:
gnkbdh
gnkbdh
13.09.2020 19:15

Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника. 

Пусть дан треугольник АВС, угол С=90º

Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М. 

Пусть АК=х, ВН=у. 

Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у

АВ=х+у

АС=х+3, ВС=у+3

Формула радиуса вписанной окружности

r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр

р=х+у+3

3=84:(х+у+3)

х+у+3=28⇒

х+у=25

у=25-х

АВ=х+у=25 дм

АС=х+3

ВС=25-х+3=28-х

По т.Пифагора

(х+3)²+(28-х)²=625

Произведя вычисления и приведя подобные члены, получим квадратное уравнение

х²-25х+84=0

D=25²-4·84=289

Решив уравнение, найдем два корня: 21 и 4

АС=21+3=24 дм

ВС=28-21=7 дм

Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25


Площадь прямоугольного треугольника равна 84 дм^2, а радиус окружности, вписанной в этот треугольник
0,0(0 оценок)
Ответ:
резной777
резной777
28.04.2021 01:14

Объяснение:

Дано:  

АH=12 см, АВ=13 см, D = 26 = 2r

BC = ?

описанная окружность с центром на серединных перпендикуляров .

для вписанного в окружность Δ  R= (a*b*c)/ (2S)

АК = КС = 1/2 *АС;     АМ = МВ  = 1/2 *АВ

из ΔАОМ ;   ОМ = √(АО^2 - AM^2) = √(13^2 - (13/2)^2)= √[(13^2* (1- 1/4)]

OM = 6.5√3 то есть  АО- гипотенуза, АМ - 1/2*АО , ⇒ ∠АОМ = 30° .

ΔАОВ - равнобедренный  АО = ОВ,   ∠ОАВ = ∠ОВА = 60 ⇒ ΔАОВ-равносторонний, ⇒ ΔАВС равнобедренный, СМ =медиана, биссектриса, высота.  (см рис.2) ⇒ AC = BC

( из ΔBHС ) BH = √(AB^2-BH^2) = √(13^2 - 12^)  = √(13+12)(13-12)=√25 = 5

ΔBHA и Δ СКО подобны как Δ с взаимно ⊥ сторонами,  а именно

\frac{OK}{AH} =\frac{CK}{BH} =\frac{OC}{BA}

 R= (a*b*c)/ (4S) = AC^2* AB / (4SΔавс)

SΔавс 4 1/2*BH*AC

R=AC^2* AB / (4*1/2*BH*AC)\\R=\frac{AC^2* AB}{4*1/2*BH*AC} =\frac{AC*AB}{2BH} \\AC=BC = \frac{2*BH*R}{AB}\\AC=BC = \frac{2*5*13}{13}=10


в остроугольном треугольнике ABC к стороне AC проведена высота BH. найдите длину стороны ВС, если АH
в остроугольном треугольнике ABC к стороне AC проведена высота BH. найдите длину стороны ВС, если АH
в остроугольном треугольнике ABC к стороне AC проведена высота BH. найдите длину стороны ВС, если АH
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота